Skip to content

KServe Python Serving Runtime API

ModelServer

Source code in kserve/model_server.py
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
class ModelServer:
    def __init__(
        self,
        http_port: int = args.http_port,
        grpc_port: int = args.grpc_port,
        workers: int = args.workers,
        max_threads: int = args.max_threads,
        max_asyncio_workers: int = args.max_asyncio_workers,
        registered_models: Optional[ModelRepository] = None,
        enable_grpc: bool = args.enable_grpc,
        enable_docs_url: bool = args.enable_docs_url,
        enable_latency_logging: bool = args.enable_latency_logging,
        access_log_format: str = args.access_log_format,
    ):
        """KServe ModelServer Constructor

        Args:
            http_port: HTTP port. Default: ``8080``.
            grpc_port: GRPC port. Default: ``8081``.
            workers: Number of uvicorn workers. Default: ``1``.
            max_threads: Max number of gRPC processing threads. Default: ``4``
            max_asyncio_workers: Max number of AsyncIO threads. Default: ``None``
            registered_models: A optional Model repository with registered models.
            enable_grpc: Whether to turn on grpc server. Default: ``True``
            enable_docs_url: Whether to turn on ``/docs`` Swagger UI. Default: ``False``.
            enable_latency_logging: Whether to log latency metric. Default: ``True``.
            access_log_format: Format to set for the access log (provided by asgi-logger). Default: ``None``.
                               it allows to override only the `uvicorn.access`'s format configuration with a richer
                               set of fields (output hardcoded to `stdout`). This limitation is currently due to the
                               ASGI specs that don't describe how access logging should be implemented in detail
                               (please refer to this Uvicorn
                               [github issue](https://github.com/encode/uvicorn/issues/527) for more info).
        """
        self.registered_models = (
            ModelRepository() if registered_models is None else registered_models
        )
        self.http_port = http_port
        self.grpc_port = grpc_port
        self.workers = workers
        self.max_threads = max_threads
        self.max_asyncio_workers = max_asyncio_workers
        self.enable_grpc = enable_grpc
        self.enable_docs_url = enable_docs_url
        self.enable_latency_logging = enable_latency_logging
        self.dataplane = DataPlane(model_registry=self.registered_models)
        self.model_repository_extension = ModelRepositoryExtension(
            model_registry=self.registered_models
        )
        self._grpc_server = None
        self._rest_server = None
        if self.enable_grpc:
            self._grpc_server = GRPCServer(
                grpc_port,
                self.dataplane,
                self.model_repository_extension,
                kwargs=vars(args),
            )
        if args.configure_logging:
            # If the logger does not have any handlers, then the logger is not configured.
            # For backward compatibility, we configure the logger here.
            if len(logger.handlers) == 0:
                logging.configure_logging(args.log_config_file)
        self.access_log_format = access_log_format
        self._custom_exception_handler = None

    async def _serve_rest(self):
        logger.info(f"Starting uvicorn with {self.workers} workers")
        loop = asyncio.get_event_loop()
        if sys.platform not in ["win32", "win64"]:
            sig_list = [signal.SIGINT, signal.SIGTERM, signal.SIGQUIT]
        else:
            sig_list = [signal.SIGINT, signal.SIGTERM]

        for sig in sig_list:
            loop.add_signal_handler(
                sig, lambda s=sig: asyncio.create_task(self.stop(sig=s))
            )
        if self._custom_exception_handler is None:
            loop.set_exception_handler(self.default_exception_handler)
        else:
            loop.set_exception_handler(self._custom_exception_handler)
        self._rest_server = UvicornServer(
            app,
            self.http_port,
            self.dataplane,
            self.model_repository_extension,
            # By setting log_config to None we tell Uvicorn not to configure logging as it is already
            # configured by kserve.
            log_config=None,
            access_log_format=self.access_log_format,
            workers=self.workers,
        )
        await self._rest_server.run()

    def start(self, models: List[BaseKServeModel]) -> None:
        """Start the model server with a set of registered models.

        Args:
            models: a list of models to register to the model server.
        """
        if isinstance(models, list):
            at_least_one_model_ready = False
            for model in models:
                if isinstance(model, BaseKServeModel):
                    if model.ready:
                        at_least_one_model_ready = True
                        self.register_model(model)
                        # pass whether to log request latency into the model
                        model.enable_latency_logging = self.enable_latency_logging
                    model.start()
                else:
                    raise RuntimeError("Model type should be 'BaseKServeModel'")
            if not at_least_one_model_ready and models:
                raise NoModelReady(models)
        else:
            raise RuntimeError("Unknown model collection type")

        if self.max_asyncio_workers is None:
            # formula as suggest in https://bugs.python.org/issue35279
            self.max_asyncio_workers = min(32, utils.cpu_count() + 4)
        logger.info(f"Setting max asyncio worker threads as {self.max_asyncio_workers}")
        asyncio.get_event_loop().set_default_executor(
            concurrent.futures.ThreadPoolExecutor(max_workers=self.max_asyncio_workers)
        )

        async def servers_task():
            servers = [self._serve_rest()]
            if self.enable_grpc:
                servers.append(self._grpc_server.start(self.max_threads))
            await asyncio.gather(*servers)

        asyncio.run(servers_task())

    async def stop(self, sig: Optional[int] = None):
        """Stop the instances of REST and gRPC model servers.

        Args:
            sig: The signal to stop the server. Default: ``None``.
        """
        logger.info("Stopping the model server")
        if self._rest_server:
            logger.info("Stopping the rest server")
            await self._rest_server.stop()
        if self._grpc_server:
            logger.info("Stopping the grpc server")
            await self._grpc_server.stop(sig)
        for model_name in list(self.registered_models.get_models().keys()):
            self.registered_models.unload(model_name)

    def register_exception_handler(
        self,
        handler: Callable[[asyncio.events.AbstractEventLoop, Dict[str, Any]], None],
    ):
        """Add a custom handler as the event loop exception handler.

        If a handler is not provided, the default exception handler will be set.

        handler should be a callable object, it should have a signature matching '(loop, context)', where 'loop'
        will be a reference to the active event loop, 'context' will be a dict object (see `call_exception_handler()`
        documentation for details about context).
        """
        self._custom_exception_handler = handler

    def default_exception_handler(
        self, loop: asyncio.events.AbstractEventLoop, context: Dict[str, Any]
    ):
        """Default exception handler for event loop.

        This is called when an exception occurs and no exception handler is set.
        This can be called by a custom exception handler that wants to defer to the default handler behavior.
        """
        if "exception" in context:
            logger.error(f"Caught exception: {context.get('exception')}")
        logger.error(f"message: { context.get('message')}")
        loop.default_exception_handler(context)

    def register_model(self, model: BaseKServeModel):
        """Register a model to the model server.

        Args:
            model: The model object.
        """
        if not model.name:
            raise Exception("Failed to register model, model.name must be provided.")
        self.registered_models.update(model)
        logger.info("Registering model: %s", model.name)

__init__(http_port=args.http_port, grpc_port=args.grpc_port, workers=args.workers, max_threads=args.max_threads, max_asyncio_workers=args.max_asyncio_workers, registered_models=None, enable_grpc=args.enable_grpc, enable_docs_url=args.enable_docs_url, enable_latency_logging=args.enable_latency_logging, access_log_format=args.access_log_format)

KServe ModelServer Constructor

Parameters:

Name Type Description Default
http_port int

HTTP port. Default: 8080.

http_port
grpc_port int

GRPC port. Default: 8081.

grpc_port
workers int

Number of uvicorn workers. Default: 1.

workers
max_threads int

Max number of gRPC processing threads. Default: 4

max_threads
max_asyncio_workers int

Max number of AsyncIO threads. Default: None

max_asyncio_workers
registered_models Optional[ModelRepository]

A optional Model repository with registered models.

None
enable_grpc bool

Whether to turn on grpc server. Default: True

enable_grpc
enable_docs_url bool

Whether to turn on /docs Swagger UI. Default: False.

enable_docs_url
enable_latency_logging bool

Whether to log latency metric. Default: True.

enable_latency_logging
access_log_format str

Format to set for the access log (provided by asgi-logger). Default: None. it allows to override only the uvicorn.access's format configuration with a richer set of fields (output hardcoded to stdout). This limitation is currently due to the ASGI specs that don't describe how access logging should be implemented in detail (please refer to this Uvicorn github issue for more info).

access_log_format
Source code in kserve/model_server.py
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
def __init__(
    self,
    http_port: int = args.http_port,
    grpc_port: int = args.grpc_port,
    workers: int = args.workers,
    max_threads: int = args.max_threads,
    max_asyncio_workers: int = args.max_asyncio_workers,
    registered_models: Optional[ModelRepository] = None,
    enable_grpc: bool = args.enable_grpc,
    enable_docs_url: bool = args.enable_docs_url,
    enable_latency_logging: bool = args.enable_latency_logging,
    access_log_format: str = args.access_log_format,
):
    """KServe ModelServer Constructor

    Args:
        http_port: HTTP port. Default: ``8080``.
        grpc_port: GRPC port. Default: ``8081``.
        workers: Number of uvicorn workers. Default: ``1``.
        max_threads: Max number of gRPC processing threads. Default: ``4``
        max_asyncio_workers: Max number of AsyncIO threads. Default: ``None``
        registered_models: A optional Model repository with registered models.
        enable_grpc: Whether to turn on grpc server. Default: ``True``
        enable_docs_url: Whether to turn on ``/docs`` Swagger UI. Default: ``False``.
        enable_latency_logging: Whether to log latency metric. Default: ``True``.
        access_log_format: Format to set for the access log (provided by asgi-logger). Default: ``None``.
                           it allows to override only the `uvicorn.access`'s format configuration with a richer
                           set of fields (output hardcoded to `stdout`). This limitation is currently due to the
                           ASGI specs that don't describe how access logging should be implemented in detail
                           (please refer to this Uvicorn
                           [github issue](https://github.com/encode/uvicorn/issues/527) for more info).
    """
    self.registered_models = (
        ModelRepository() if registered_models is None else registered_models
    )
    self.http_port = http_port
    self.grpc_port = grpc_port
    self.workers = workers
    self.max_threads = max_threads
    self.max_asyncio_workers = max_asyncio_workers
    self.enable_grpc = enable_grpc
    self.enable_docs_url = enable_docs_url
    self.enable_latency_logging = enable_latency_logging
    self.dataplane = DataPlane(model_registry=self.registered_models)
    self.model_repository_extension = ModelRepositoryExtension(
        model_registry=self.registered_models
    )
    self._grpc_server = None
    self._rest_server = None
    if self.enable_grpc:
        self._grpc_server = GRPCServer(
            grpc_port,
            self.dataplane,
            self.model_repository_extension,
            kwargs=vars(args),
        )
    if args.configure_logging:
        # If the logger does not have any handlers, then the logger is not configured.
        # For backward compatibility, we configure the logger here.
        if len(logger.handlers) == 0:
            logging.configure_logging(args.log_config_file)
    self.access_log_format = access_log_format
    self._custom_exception_handler = None

default_exception_handler(loop, context)

Default exception handler for event loop.

This is called when an exception occurs and no exception handler is set. This can be called by a custom exception handler that wants to defer to the default handler behavior.

Source code in kserve/model_server.py
341
342
343
344
345
346
347
348
349
350
351
352
def default_exception_handler(
    self, loop: asyncio.events.AbstractEventLoop, context: Dict[str, Any]
):
    """Default exception handler for event loop.

    This is called when an exception occurs and no exception handler is set.
    This can be called by a custom exception handler that wants to defer to the default handler behavior.
    """
    if "exception" in context:
        logger.error(f"Caught exception: {context.get('exception')}")
    logger.error(f"message: { context.get('message')}")
    loop.default_exception_handler(context)

register_exception_handler(handler)

Add a custom handler as the event loop exception handler.

If a handler is not provided, the default exception handler will be set.

handler should be a callable object, it should have a signature matching '(loop, context)', where 'loop' will be a reference to the active event loop, 'context' will be a dict object (see call_exception_handler() documentation for details about context).

Source code in kserve/model_server.py
327
328
329
330
331
332
333
334
335
336
337
338
339
def register_exception_handler(
    self,
    handler: Callable[[asyncio.events.AbstractEventLoop, Dict[str, Any]], None],
):
    """Add a custom handler as the event loop exception handler.

    If a handler is not provided, the default exception handler will be set.

    handler should be a callable object, it should have a signature matching '(loop, context)', where 'loop'
    will be a reference to the active event loop, 'context' will be a dict object (see `call_exception_handler()`
    documentation for details about context).
    """
    self._custom_exception_handler = handler

register_model(model)

Register a model to the model server.

Parameters:

Name Type Description Default
model BaseKServeModel

The model object.

required
Source code in kserve/model_server.py
354
355
356
357
358
359
360
361
362
363
def register_model(self, model: BaseKServeModel):
    """Register a model to the model server.

    Args:
        model: The model object.
    """
    if not model.name:
        raise Exception("Failed to register model, model.name must be provided.")
    self.registered_models.update(model)
    logger.info("Registering model: %s", model.name)

start(models)

Start the model server with a set of registered models.

Parameters:

Name Type Description Default
models List[BaseKServeModel]

a list of models to register to the model server.

required
Source code in kserve/model_server.py
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
def start(self, models: List[BaseKServeModel]) -> None:
    """Start the model server with a set of registered models.

    Args:
        models: a list of models to register to the model server.
    """
    if isinstance(models, list):
        at_least_one_model_ready = False
        for model in models:
            if isinstance(model, BaseKServeModel):
                if model.ready:
                    at_least_one_model_ready = True
                    self.register_model(model)
                    # pass whether to log request latency into the model
                    model.enable_latency_logging = self.enable_latency_logging
                model.start()
            else:
                raise RuntimeError("Model type should be 'BaseKServeModel'")
        if not at_least_one_model_ready and models:
            raise NoModelReady(models)
    else:
        raise RuntimeError("Unknown model collection type")

    if self.max_asyncio_workers is None:
        # formula as suggest in https://bugs.python.org/issue35279
        self.max_asyncio_workers = min(32, utils.cpu_count() + 4)
    logger.info(f"Setting max asyncio worker threads as {self.max_asyncio_workers}")
    asyncio.get_event_loop().set_default_executor(
        concurrent.futures.ThreadPoolExecutor(max_workers=self.max_asyncio_workers)
    )

    async def servers_task():
        servers = [self._serve_rest()]
        if self.enable_grpc:
            servers.append(self._grpc_server.start(self.max_threads))
        await asyncio.gather(*servers)

    asyncio.run(servers_task())

stop(sig=None) async

Stop the instances of REST and gRPC model servers.

Parameters:

Name Type Description Default
sig Optional[int]

The signal to stop the server. Default: None.

None
Source code in kserve/model_server.py
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
async def stop(self, sig: Optional[int] = None):
    """Stop the instances of REST and gRPC model servers.

    Args:
        sig: The signal to stop the server. Default: ``None``.
    """
    logger.info("Stopping the model server")
    if self._rest_server:
        logger.info("Stopping the rest server")
        await self._rest_server.stop()
    if self._grpc_server:
        logger.info("Stopping the grpc server")
        await self._grpc_server.stop(sig)
    for model_name in list(self.registered_models.get_models().keys()):
        self.registered_models.unload(model_name)

BaseKServeModel

Bases: ABC

A base class to inherit all of the kserve models from.

This class implements the expectations of model repository and model server.

Source code in kserve/model.py
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
class BaseKServeModel(ABC):
    """
    A base class to inherit all of the kserve models from.

    This class implements the expectations of model repository and model server.
    """

    def __init__(self, name: str):
        """
        Adds the required attributes

        Args:
            name: The name of the model.
        """
        self.name = name
        self.ready = False

    async def healthy(self) -> bool:
        """
        Check the health of this model. By default returns `self.ready`.

        Returns:
            True if healthy, false otherwise
        """
        return self.ready

    def load(self) -> bool:
        """Load handler can be overridden to load the model from storage.
        The `self.ready` should be set to True after the model is loaded. The flag is used for model health check.

        Returns:
            bool: True if model is ready, False otherwise
        """
        self.ready = True
        return self.ready

    def start(self):
        """Start handler can be overridden to perform model setup"""
        self.ready = True

    def stop(self):
        """Stop handler can be overridden to perform model teardown"""
        self.ready = False

__init__(name)

Adds the required attributes

Parameters:

Name Type Description Default
name str

The name of the model.

required
Source code in kserve/model.py
49
50
51
52
53
54
55
56
57
def __init__(self, name: str):
    """
    Adds the required attributes

    Args:
        name: The name of the model.
    """
    self.name = name
    self.ready = False

healthy() async

Check the health of this model. By default returns self.ready.

Returns:

Type Description
bool

True if healthy, false otherwise

Source code in kserve/model.py
59
60
61
62
63
64
65
66
async def healthy(self) -> bool:
    """
    Check the health of this model. By default returns `self.ready`.

    Returns:
        True if healthy, false otherwise
    """
    return self.ready

load()

Load handler can be overridden to load the model from storage. The self.ready should be set to True after the model is loaded. The flag is used for model health check.

Returns:

Name Type Description
bool bool

True if model is ready, False otherwise

Source code in kserve/model.py
68
69
70
71
72
73
74
75
76
def load(self) -> bool:
    """Load handler can be overridden to load the model from storage.
    The `self.ready` should be set to True after the model is loaded. The flag is used for model health check.

    Returns:
        bool: True if model is ready, False otherwise
    """
    self.ready = True
    return self.ready

start()

Start handler can be overridden to perform model setup

Source code in kserve/model.py
78
79
80
def start(self):
    """Start handler can be overridden to perform model setup"""
    self.ready = True

stop()

Stop handler can be overridden to perform model teardown

Source code in kserve/model.py
82
83
84
def stop(self):
    """Stop handler can be overridden to perform model teardown"""
    self.ready = False

InferenceModel

Bases: BaseKServeModel

Abstract class representing a model that supports standard inference and prediction.

Source code in kserve/model.py
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
class InferenceModel(BaseKServeModel):
    """
    Abstract class representing a model that supports standard inference and prediction.
    """

    @abstractmethod
    def __call__(
        self,
        body: Union[Dict, CloudEvent, InferRequest],
        headers: Optional[Dict[str, str]] = None,
        verb: InferenceVerb = InferenceVerb.PREDICT,
    ) -> InferReturnType:
        pass

    def get_input_types(self) -> List[Dict]:
        # Override this function to return appropriate input format expected by your model.
        # Refer https://kserve.github.io/website/0.9/modelserving/inference_api/#model-metadata-response-json-object

        # Eg.
        # return [{ "name": "", "datatype": "INT32", "shape": [1,5], }]
        return []

    def get_output_types(self) -> List[Dict]:
        # Override this function to return appropriate output format returned by your model.
        # Refer https://kserve.github.io/website/0.9/modelserving/inference_api/#model-metadata-response-json-object

        # Eg.
        # return [{ "name": "", "datatype": "INT32", "shape": [1,5], }]
        return []

Model

Bases: InferenceModel

Source code in kserve/model.py
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
class Model(InferenceModel):
    def __init__(self, name: str, predictor_config: Optional[PredictorConfig] = None):
        """KServe Model Public Interface

        Model is intended to be subclassed to implement the model handlers.

        Args:
            name: The name of the model.
            predictor_config: The configurations for http call to the predictor.
        """
        super().__init__(name)

        # The predictor config member fields are kept for backwards compatibility as they could be set outside
        self.protocol = (
            predictor_config.predictor_protocol
            if predictor_config
            else PredictorProtocol.REST_V1.value
        )
        self.predictor_host = (
            predictor_config.predictor_host if predictor_config else None
        )
        # The default timeout matches what is set in generated Istio virtual service resources.
        # We generally don't want things to time out at the request level here,
        # timeouts should be handled elsewhere in the system.
        self.timeout = (
            predictor_config.predictor_request_timeout_seconds
            if predictor_config
            else 600
        )
        self.use_ssl = predictor_config.predictor_use_ssl if predictor_config else False
        self.explainer_host = None
        self._http_client_instance = None
        self._grpc_client_stub = None
        self.enable_latency_logging = False

    async def __call__(
        self,
        body: Union[Dict, CloudEvent, InferRequest],
        headers: Optional[Dict[str, str]] = None,
        verb: InferenceVerb = InferenceVerb.PREDICT,
    ) -> InferReturnType:
        """Method to call predictor or explainer with the given input.

        Args:
            body: Request body.
            verb: The inference verb for predict/generate/explain
            headers: Request headers.

        Returns:
            Response output from preprocess -> predict/generate/explain -> postprocess
        """
        request_id = headers.get("x-request-id", "N.A.") if headers else "N.A."

        # latency vars
        preprocess_ms = 0
        explain_ms = 0
        predict_ms = 0
        postprocess_ms = 0
        prom_labels = get_labels(self.name)

        with PRE_HIST_TIME.labels(**prom_labels).time():
            start = time.time()
            payload = (
                await self.preprocess(body, headers)
                if inspect.iscoroutinefunction(self.preprocess)
                else self.preprocess(body, headers)
            )
            preprocess_ms = get_latency_ms(start, time.time())
        payload = self.validate(payload)
        if verb == InferenceVerb.EXPLAIN:
            with EXPLAIN_HIST_TIME.labels(**prom_labels).time():
                start = time.time()
                response = (
                    (await self.explain(payload, headers))
                    if inspect.iscoroutinefunction(self.explain)
                    else self.explain(payload, headers)
                )
                explain_ms = get_latency_ms(start, time.time())
        elif verb == InferenceVerb.PREDICT:
            with PREDICT_HIST_TIME.labels(**prom_labels).time():
                start = time.time()
                response = (
                    (await self.predict(payload, headers))
                    if inspect.iscoroutinefunction(self.predict)
                    else self.predict(payload, headers)
                )
                predict_ms = get_latency_ms(start, time.time())
        else:
            raise NotImplementedError

        with POST_HIST_TIME.labels(**prom_labels).time():
            start = time.time()
            response = (
                await self.postprocess(response, headers)
                if inspect.iscoroutinefunction(self.postprocess)
                else self.postprocess(response, headers)
            )
            postprocess_ms = get_latency_ms(start, time.time())

        if self.enable_latency_logging is True:
            trace_logger.info(
                f"requestId: {request_id}, preprocess_ms: {preprocess_ms}, "
                f"explain_ms: {explain_ms}, predict_ms: {predict_ms}, "
                f"postprocess_ms: {postprocess_ms}"
            )

        return response

    @property
    def _http_client(self) -> InferenceRESTClient:
        if self._http_client_instance is None and self.predictor_host:
            config = RESTConfig(protocol=self.protocol, timeout=self.timeout, retries=3)
            self._http_client_instance = InferenceRESTClient(config=config)
        return self._http_client_instance

    @property
    def _grpc_client(self) -> InferenceGRPCClient:
        if self._grpc_client_stub is None and self.predictor_host:
            self._grpc_client_stub = InferenceGRPCClient(
                url=self.predictor_host, use_ssl=self.use_ssl, timeout=self.timeout
            )
        return self._grpc_client_stub

    def validate(self, payload):
        if isinstance(payload, ModelInferRequest):
            return payload
        if isinstance(payload, InferRequest):
            return payload
        # TODO: validate the request if self.get_input_types() defines the input types.
        if self.protocol == PredictorProtocol.REST_V2.value:
            if "inputs" in payload and not isinstance(payload["inputs"], list):
                raise InvalidInput('Expected "inputs" to be a list')
        elif self.protocol == PredictorProtocol.REST_V1.value:
            if (
                isinstance(payload, Dict)
                and "instances" in payload
                and not isinstance(payload["instances"], list)
            ):
                raise InvalidInput('Expected "instances" to be a list')
        return payload

    def load(self) -> bool:
        """Load handler can be overridden to load the model from storage.
        The `self.ready` should be set to True after the model is loaded. The flag is used for model health check.

        Returns:
            bool: True if model is ready, False otherwise
        """
        self.ready = True
        return self.ready

    async def preprocess(
        self, payload: Union[Dict, InferRequest], headers: Dict[str, str] = None
    ) -> Union[Dict, InferRequest]:
        """`preprocess` handler can be overridden for data or feature transformation.
        The model decodes the request body to `Dict` for v1 endpoints and `InferRequest` for v2 endpoints.

        Args:
            payload: Payload of the request.
            headers: Request headers.

        Returns:
            A Dict or InferRequest in KServe Model Transformer mode which is transmitted on the wire to predictor.
            Tensors in KServe Predictor mode which is passed to predict handler for performing the inference.
        """

        return payload

    async def postprocess(
        self, result: Union[Dict, InferResponse], headers: Dict[str, str] = None
    ) -> Union[Dict, InferResponse]:
        """The `postprocess` handler can be overridden for inference result or response transformation.
        The predictor sends back the inference result in `Dict` for v1 endpoints and `InferResponse` for v2 endpoints.

        Args:
            result: The inference result passed from `predict` handler or the HTTP response from predictor.
            headers: Request headers.

        Returns:
            A Dict or InferResponse after post-process to return back to the client.
        """
        return result

    async def _http_predict(
        self, payload: Union[Dict, InferRequest], headers: Dict[str, str] = None
    ) -> Union[Dict, InferResponse]:
        # Adjusting headers. Inject content type if not exist.
        # Also, removing host, as the header is the one passed to transformer and contains transformer's host
        predict_headers = {"Content-Type": "application/json"}
        if headers is not None:
            if "x-request-id" in headers:
                predict_headers["x-request-id"] = headers["x-request-id"]
            if "x-b3-traceid" in headers:
                predict_headers["x-b3-traceid"] = headers["x-b3-traceid"]

        protocol = "https" if self.use_ssl else "http"
        predict_base_url = PREDICTOR_BASE_URL_FORMAT.format(
            protocol, self.predictor_host
        )
        response = await self._http_client.infer(
            predict_base_url,
            model_name=self.name,
            data=payload,
            headers=predict_headers,
        )
        return response

    async def _grpc_predict(
        self,
        payload: Union[ModelInferRequest, InferRequest],
        headers: Dict[str, str] = None,
    ) -> InferResponse:
        if isinstance(payload, ModelInferRequest):
            payload = InferRequest.from_grpc(payload)
        async_result = await self._grpc_client.infer(
            infer_request=payload,
            headers=(
                ("request_type", "grpc_v2"),
                ("response_type", "grpc_v2"),
                ("x-request-id", headers.get("x-request-id", "")),
            ),
        )
        return async_result

    async def predict(
        self,
        payload: Union[Dict, InferRequest, ModelInferRequest],
        headers: Dict[str, str] = None,
    ) -> Union[Dict, InferResponse, AsyncIterator[Any]]:
        """The `predict` handler can be overridden for performing the inference.
            By default, the predict handler makes call to predictor for the inference step.

        Args:
            payload: Model inputs passed from `preprocess` handler.
            headers: Request headers.

        Returns:
            Inference result or a Response from the predictor.

        Raises:
            HTTPStatusError when getting back an error response from the predictor.
        """
        if not self.predictor_host:
            raise NotImplementedError("Could not find predictor_host.")
        if self.protocol == PredictorProtocol.GRPC_V2.value:
            return await self._grpc_predict(payload, headers)
        else:
            return await self._http_predict(payload, headers)

    async def explain(self, payload: Dict, headers: Dict[str, str] = None) -> Dict:
        """`explain` handler can be overridden to implement the model explanation.
        The default implementation makes call to the explainer if ``explainer_host`` is specified.

        Args:
            payload: Explainer model inputs passed from preprocess handler.
            headers: Request headers.

        Returns:
            An Explanation for the inference result.

        Raises:
            HTTPStatusError when getting back an error response from the explainer.
        """
        if self.explainer_host is None:
            raise NotImplementedError("Could not find explainer_host.")

        explain_headers = {"content-type": "application/json"}
        if headers is not None:
            if "content-type" in headers:
                explain_headers["content-type"] = headers["content-type"]
            if "x-request-id" in headers:
                explain_headers["x-request-id"] = headers["x-request-id"]
            if "x-b3-traceid" in headers:
                explain_headers["x-b3-traceid"] = headers["x-b3-traceid"]

        protocol = "https" if self.use_ssl else "http"
        # Currently explainer only supports the kserve v1 endpoints
        explain_base_url = EXPLAINER_BASE_URL_FORMAT.format(
            protocol, self.explainer_host
        )
        response = await self._http_client.explain(
            explain_base_url,
            model_name=self.name,
            data=payload,
            headers=explain_headers,
        )
        return response

__call__(body, headers=None, verb=InferenceVerb.PREDICT) async

Method to call predictor or explainer with the given input.

Parameters:

Name Type Description Default
body Union[Dict, CloudEvent, InferRequest]

Request body.

required
verb InferenceVerb

The inference verb for predict/generate/explain

PREDICT
headers Optional[Dict[str, str]]

Request headers.

None

Returns:

Type Description
InferReturnType

Response output from preprocess -> predict/generate/explain -> postprocess

Source code in kserve/model.py
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
async def __call__(
    self,
    body: Union[Dict, CloudEvent, InferRequest],
    headers: Optional[Dict[str, str]] = None,
    verb: InferenceVerb = InferenceVerb.PREDICT,
) -> InferReturnType:
    """Method to call predictor or explainer with the given input.

    Args:
        body: Request body.
        verb: The inference verb for predict/generate/explain
        headers: Request headers.

    Returns:
        Response output from preprocess -> predict/generate/explain -> postprocess
    """
    request_id = headers.get("x-request-id", "N.A.") if headers else "N.A."

    # latency vars
    preprocess_ms = 0
    explain_ms = 0
    predict_ms = 0
    postprocess_ms = 0
    prom_labels = get_labels(self.name)

    with PRE_HIST_TIME.labels(**prom_labels).time():
        start = time.time()
        payload = (
            await self.preprocess(body, headers)
            if inspect.iscoroutinefunction(self.preprocess)
            else self.preprocess(body, headers)
        )
        preprocess_ms = get_latency_ms(start, time.time())
    payload = self.validate(payload)
    if verb == InferenceVerb.EXPLAIN:
        with EXPLAIN_HIST_TIME.labels(**prom_labels).time():
            start = time.time()
            response = (
                (await self.explain(payload, headers))
                if inspect.iscoroutinefunction(self.explain)
                else self.explain(payload, headers)
            )
            explain_ms = get_latency_ms(start, time.time())
    elif verb == InferenceVerb.PREDICT:
        with PREDICT_HIST_TIME.labels(**prom_labels).time():
            start = time.time()
            response = (
                (await self.predict(payload, headers))
                if inspect.iscoroutinefunction(self.predict)
                else self.predict(payload, headers)
            )
            predict_ms = get_latency_ms(start, time.time())
    else:
        raise NotImplementedError

    with POST_HIST_TIME.labels(**prom_labels).time():
        start = time.time()
        response = (
            await self.postprocess(response, headers)
            if inspect.iscoroutinefunction(self.postprocess)
            else self.postprocess(response, headers)
        )
        postprocess_ms = get_latency_ms(start, time.time())

    if self.enable_latency_logging is True:
        trace_logger.info(
            f"requestId: {request_id}, preprocess_ms: {preprocess_ms}, "
            f"explain_ms: {explain_ms}, predict_ms: {predict_ms}, "
            f"postprocess_ms: {postprocess_ms}"
        )

    return response

__init__(name, predictor_config=None)

KServe Model Public Interface

Model is intended to be subclassed to implement the model handlers.

Parameters:

Name Type Description Default
name str

The name of the model.

required
predictor_config Optional[PredictorConfig]

The configurations for http call to the predictor.

None
Source code in kserve/model.py
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def __init__(self, name: str, predictor_config: Optional[PredictorConfig] = None):
    """KServe Model Public Interface

    Model is intended to be subclassed to implement the model handlers.

    Args:
        name: The name of the model.
        predictor_config: The configurations for http call to the predictor.
    """
    super().__init__(name)

    # The predictor config member fields are kept for backwards compatibility as they could be set outside
    self.protocol = (
        predictor_config.predictor_protocol
        if predictor_config
        else PredictorProtocol.REST_V1.value
    )
    self.predictor_host = (
        predictor_config.predictor_host if predictor_config else None
    )
    # The default timeout matches what is set in generated Istio virtual service resources.
    # We generally don't want things to time out at the request level here,
    # timeouts should be handled elsewhere in the system.
    self.timeout = (
        predictor_config.predictor_request_timeout_seconds
        if predictor_config
        else 600
    )
    self.use_ssl = predictor_config.predictor_use_ssl if predictor_config else False
    self.explainer_host = None
    self._http_client_instance = None
    self._grpc_client_stub = None
    self.enable_latency_logging = False

explain(payload, headers=None) async

explain handler can be overridden to implement the model explanation. The default implementation makes call to the explainer if explainer_host is specified.

Parameters:

Name Type Description Default
payload Dict

Explainer model inputs passed from preprocess handler.

required
headers Dict[str, str]

Request headers.

None

Returns:

Type Description
Dict

An Explanation for the inference result.

Source code in kserve/model.py
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
async def explain(self, payload: Dict, headers: Dict[str, str] = None) -> Dict:
    """`explain` handler can be overridden to implement the model explanation.
    The default implementation makes call to the explainer if ``explainer_host`` is specified.

    Args:
        payload: Explainer model inputs passed from preprocess handler.
        headers: Request headers.

    Returns:
        An Explanation for the inference result.

    Raises:
        HTTPStatusError when getting back an error response from the explainer.
    """
    if self.explainer_host is None:
        raise NotImplementedError("Could not find explainer_host.")

    explain_headers = {"content-type": "application/json"}
    if headers is not None:
        if "content-type" in headers:
            explain_headers["content-type"] = headers["content-type"]
        if "x-request-id" in headers:
            explain_headers["x-request-id"] = headers["x-request-id"]
        if "x-b3-traceid" in headers:
            explain_headers["x-b3-traceid"] = headers["x-b3-traceid"]

    protocol = "https" if self.use_ssl else "http"
    # Currently explainer only supports the kserve v1 endpoints
    explain_base_url = EXPLAINER_BASE_URL_FORMAT.format(
        protocol, self.explainer_host
    )
    response = await self._http_client.explain(
        explain_base_url,
        model_name=self.name,
        data=payload,
        headers=explain_headers,
    )
    return response

load()

Load handler can be overridden to load the model from storage. The self.ready should be set to True after the model is loaded. The flag is used for model health check.

Returns:

Name Type Description
bool bool

True if model is ready, False otherwise

Source code in kserve/model.py
298
299
300
301
302
303
304
305
306
def load(self) -> bool:
    """Load handler can be overridden to load the model from storage.
    The `self.ready` should be set to True after the model is loaded. The flag is used for model health check.

    Returns:
        bool: True if model is ready, False otherwise
    """
    self.ready = True
    return self.ready

postprocess(result, headers=None) async

The postprocess handler can be overridden for inference result or response transformation. The predictor sends back the inference result in Dict for v1 endpoints and InferResponse for v2 endpoints.

Parameters:

Name Type Description Default
result Union[Dict, InferResponse]

The inference result passed from predict handler or the HTTP response from predictor.

required
headers Dict[str, str]

Request headers.

None

Returns:

Type Description
Union[Dict, InferResponse]

A Dict or InferResponse after post-process to return back to the client.

Source code in kserve/model.py
325
326
327
328
329
330
331
332
333
334
335
336
337
338
async def postprocess(
    self, result: Union[Dict, InferResponse], headers: Dict[str, str] = None
) -> Union[Dict, InferResponse]:
    """The `postprocess` handler can be overridden for inference result or response transformation.
    The predictor sends back the inference result in `Dict` for v1 endpoints and `InferResponse` for v2 endpoints.

    Args:
        result: The inference result passed from `predict` handler or the HTTP response from predictor.
        headers: Request headers.

    Returns:
        A Dict or InferResponse after post-process to return back to the client.
    """
    return result

predict(payload, headers=None) async

The predict handler can be overridden for performing the inference. By default, the predict handler makes call to predictor for the inference step.

Parameters:

Name Type Description Default
payload Union[Dict, InferRequest, ModelInferRequest]

Model inputs passed from preprocess handler.

required
headers Dict[str, str]

Request headers.

None

Returns:

Type Description
Union[Dict, InferResponse, AsyncIterator[Any]]

Inference result or a Response from the predictor.

Source code in kserve/model.py
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
async def predict(
    self,
    payload: Union[Dict, InferRequest, ModelInferRequest],
    headers: Dict[str, str] = None,
) -> Union[Dict, InferResponse, AsyncIterator[Any]]:
    """The `predict` handler can be overridden for performing the inference.
        By default, the predict handler makes call to predictor for the inference step.

    Args:
        payload: Model inputs passed from `preprocess` handler.
        headers: Request headers.

    Returns:
        Inference result or a Response from the predictor.

    Raises:
        HTTPStatusError when getting back an error response from the predictor.
    """
    if not self.predictor_host:
        raise NotImplementedError("Could not find predictor_host.")
    if self.protocol == PredictorProtocol.GRPC_V2.value:
        return await self._grpc_predict(payload, headers)
    else:
        return await self._http_predict(payload, headers)

preprocess(payload, headers=None) async

preprocess handler can be overridden for data or feature transformation. The model decodes the request body to Dict for v1 endpoints and InferRequest for v2 endpoints.

Parameters:

Name Type Description Default
payload Union[Dict, InferRequest]

Payload of the request.

required
headers Dict[str, str]

Request headers.

None

Returns:

Type Description
Union[Dict, InferRequest]

A Dict or InferRequest in KServe Model Transformer mode which is transmitted on the wire to predictor.

Union[Dict, InferRequest]

Tensors in KServe Predictor mode which is passed to predict handler for performing the inference.

Source code in kserve/model.py
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
async def preprocess(
    self, payload: Union[Dict, InferRequest], headers: Dict[str, str] = None
) -> Union[Dict, InferRequest]:
    """`preprocess` handler can be overridden for data or feature transformation.
    The model decodes the request body to `Dict` for v1 endpoints and `InferRequest` for v2 endpoints.

    Args:
        payload: Payload of the request.
        headers: Request headers.

    Returns:
        A Dict or InferRequest in KServe Model Transformer mode which is transmitted on the wire to predictor.
        Tensors in KServe Predictor mode which is passed to predict handler for performing the inference.
    """

    return payload

PredictorConfig

Source code in kserve/model.py
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
class PredictorConfig:
    def __init__(
        self,
        predictor_host: str,
        predictor_protocol: str = PredictorProtocol.REST_V1.value,
        predictor_use_ssl: bool = False,
        predictor_request_timeout_seconds: int = 600,
    ):
        """The configuration for the http call to the predictor

        Args:
            predictor_host: The host name of the predictor
            predictor_protocol: The inference protocol used for predictor http call
            predictor_use_ssl: Enable using ssl for http connection to the predictor
            predictor_request_timeout_seconds: The request timeout seconds for the predictor http call
        """
        self.predictor_host = predictor_host
        self.predictor_protocol = predictor_protocol
        self.predictor_use_ssl = predictor_use_ssl
        self.predictor_request_timeout_seconds = predictor_request_timeout_seconds

__init__(predictor_host, predictor_protocol=PredictorProtocol.REST_V1.value, predictor_use_ssl=False, predictor_request_timeout_seconds=600)

The configuration for the http call to the predictor

Parameters:

Name Type Description Default
predictor_host str

The host name of the predictor

required
predictor_protocol str

The inference protocol used for predictor http call

REST_V1.value
predictor_use_ssl bool

Enable using ssl for http connection to the predictor

False
predictor_request_timeout_seconds int

The request timeout seconds for the predictor http call

600
Source code in kserve/model.py
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
def __init__(
    self,
    predictor_host: str,
    predictor_protocol: str = PredictorProtocol.REST_V1.value,
    predictor_use_ssl: bool = False,
    predictor_request_timeout_seconds: int = 600,
):
    """The configuration for the http call to the predictor

    Args:
        predictor_host: The host name of the predictor
        predictor_protocol: The inference protocol used for predictor http call
        predictor_use_ssl: Enable using ssl for http connection to the predictor
        predictor_request_timeout_seconds: The request timeout seconds for the predictor http call
    """
    self.predictor_host = predictor_host
    self.predictor_protocol = predictor_protocol
    self.predictor_use_ssl = predictor_use_ssl
    self.predictor_request_timeout_seconds = predictor_request_timeout_seconds

InferInput

Source code in kserve/protocol/infer_type.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
class InferInput:
    _name: str
    _shape: List[int]
    _datatype: str
    _parameters: Dict

    def __init__(
        self,
        name: str,
        shape: List[int],
        datatype: str,
        data: Union[List, np.ndarray, InferTensorContents] = None,
        parameters: Optional[Union[Dict, MessageMap[str, InferParameter]]] = None,
    ):
        """An object of InferInput class is used to describe the input tensor of an inference request.

        Args:
            name: The name of the inference input whose data will be described by this object.
            shape : The shape of the associated inference input.
            datatype : The data type of the associated inference input.
            data : The data of the inference input.
                   When data is not set, raw_data is used for gRPC to transmit with numpy array bytes
                   by using `set_data_from_numpy`.
            parameters : The additional inference parameters.
        """

        self._name = name
        self._shape = shape
        self._datatype = datatype.upper()
        self._parameters = parameters
        self._data = data
        self._raw_data = None

    @property
    def name(self) -> str:
        """Get the name of inference input associated with this object.

        Returns:
            The name of the inference input
        """
        return self._name

    @property
    def datatype(self) -> str:
        """Get the datatype of inference input associated with this object.

        Returns:
            The datatype of the inference input.
        """
        return self._datatype

    @property
    def data(self) -> Union[List, np.ndarray, InferTensorContents]:
        """Get the data of the inference input associated with this object.

        Returns:
            The data of the inference input.
        """
        return self._data

    @data.setter
    def data(self, data: List):
        """Set the data of the inference input associated with this object.

        Args:
             data: data of the inference input.
        """
        self._data = data

    @property
    def shape(self) -> List[int]:
        """Get the shape of inference input associated with this object.

        Returns:
            The shape of the inference input.
        """
        return self._shape

    @property
    def parameters(self) -> Union[Dict, MessageMap[str, InferParameter], None]:
        """Get the parameters of the inference input associated with this object.

        Returns:
            The additional inference parameters
        """
        return self._parameters

    @parameters.setter
    def parameters(
        self, params: Optional[Union[Dict, MessageMap[str, InferParameter]]]
    ):
        """Set the parameters of the inference input associated with this object.

        Args:
             params: parameters of the inference input
        """
        self._parameters = params

    @shape.setter
    def shape(self, shape: List[int]):
        """Set the shape of inference input.

        Args:
            shape : The shape of the associated inference input.
        """
        self._shape = shape

    def as_string(self) -> List[List[str]]:
        """
        Decodes the inference input data as a list of strings.

        Returns:
            List[List[str]]: The decoded data as a list of strings.

        Raises:
            InvalidInput: If the datatype of the inference input is not 'BYTES'.
        """
        if self.datatype == "BYTES":
            return [s.decode("utf-8") for li in self._data for s in li]
        else:
            raise InvalidInput(f"invalid datatype {self.datatype} in the input")

    def as_numpy(self) -> np.ndarray:
        """Decode the inference input data as numpy array.

        Returns:
            A numpy array of the inference input data
        Raises:
            InvalidInput: If the datatype of the inference input is not recognized.
        """
        dtype = to_np_dtype(self.datatype)
        if dtype is None:
            raise InvalidInput(f"invalid datatype {dtype} in the input")
        if self._raw_data is not None:
            if self.datatype == "BYTES":
                # String results contain a 4-byte string length
                # followed by the actual string characters. Hence,
                # need to decode the raw bytes to convert into
                # array elements.
                np_array = deserialize_bytes_tensor(self._raw_data)
            else:
                np_array = np.frombuffer(self._raw_data, dtype=dtype)
            return np_array.reshape(self._shape)
        else:
            np_array = np.array(self._data, dtype=dtype)
            return np_array.reshape(self._shape)

    def set_data_from_numpy(self, input_tensor: np.ndarray, binary_data: bool = True):
        """Set the tensor data from the specified numpy array for input associated with this object.

        Args:
            input_tensor : The tensor data in numpy array format.
            binary_data : Indicates whether to set data for the input in binary format
                          or explicit tensor within JSON. The default value is True,
                          which means the data will be delivered as binary data with gRPC or in the
                          HTTP body after the JSON object for REST.

        Raises:
            InferenceError if failed to set data for the tensor.
        """
        if not isinstance(input_tensor, (np.ndarray,)):
            raise InferenceError("input_tensor must be a numpy array")

        dtype = from_np_dtype(input_tensor.dtype)
        if self._datatype != dtype:
            raise InferenceError(
                "got unexpected datatype {} from numpy array, expected {}".format(
                    dtype, self._datatype
                )
            )
        valid_shape = True
        if len(self._shape) != len(input_tensor.shape):
            valid_shape = False
        else:
            for i in range(len(self._shape)):
                if self._shape[i] != input_tensor.shape[i]:
                    valid_shape = False
        if not valid_shape:
            raise InferenceError(
                "got unexpected numpy array shape [{}], expected [{}]".format(
                    str(input_tensor.shape)[1:-1], str(self._shape)[1:-1]
                )
            )

        if not binary_data:
            if self._parameters:
                self._parameters.pop("binary_data_size", None)
            self._raw_data = None
            if self._datatype == "BYTES":
                self._data = []
                try:
                    if input_tensor.size > 0:
                        for obj in np.nditer(
                            input_tensor, flags=["refs_ok"], order="C"
                        ):
                            # We need to convert the object to string using utf-8,
                            # if we want to use the binary_data=False. JSON requires
                            # the input to be a UTF-8 string.
                            if input_tensor.dtype == np.object_:
                                if type(obj.item()) == bytes:
                                    self._data.append(str(obj.item(), encoding="utf-8"))
                                else:
                                    self._data.append(str(obj.item()))
                            else:
                                self._data.append(str(obj.item(), encoding="utf-8"))
                except UnicodeDecodeError:
                    raise InferenceError(
                        f'Failed to encode "{obj.item()}" using UTF-8. Please use binary_data=True, if'
                        " you want to pass a byte array."
                    )
            else:
                self._data = [val.item() for val in input_tensor.flatten()]
        else:
            self._data = None
            if self._datatype == "BYTES":
                serialized_output = serialize_byte_tensor(input_tensor)
                if serialized_output.size > 0:
                    self._raw_data = serialized_output.item()
                else:
                    self._raw_data = b""
            else:
                self._raw_data = input_tensor.tobytes()
            if self._parameters is None:
                self._parameters = {"binary_data_size": len(self._raw_data)}
            else:
                self._parameters["binary_data_size"] = len(self._raw_data)

    def __eq__(self, other):
        if not isinstance(other, InferInput):
            return False
        if self.name != other.name:
            return False
        if self.shape != other.shape:
            return False
        if self.datatype != other.datatype:
            return False
        if self.parameters != other.parameters:
            return False
        if self.data != other.data:
            return False
        if self._raw_data != other._raw_data:
            return False
        return True

    @parameters.setter
    def parameters(self, value):
        self._parameters = value

    def to_dict(self) -> dict:
        return {
            "name": self.name,
            "shape": self.shape,
            "datatype": self.datatype,
            "data": self.data,
            "parameters": self.parameters,
        }

    def __repr__(self) -> str:
        return (
            f'"name": "{self.name}",'
            f'"shape": {self.shape},'
            f'"datatype": "{self.datatype}",'
            f'"data": {self.data},'
            f'"parameters": {self.parameters}'
        )

    def __str__(self) -> str:
        return self.__repr__()

data: Union[List, np.ndarray, InferTensorContents] property writable

Get the data of the inference input associated with this object.

Returns:

Type Description
Union[List, ndarray, InferTensorContents]

The data of the inference input.

datatype: str property

Get the datatype of inference input associated with this object.

Returns:

Type Description
str

The datatype of the inference input.

name: str property

Get the name of inference input associated with this object.

Returns:

Type Description
str

The name of the inference input

parameters: Union[Dict, MessageMap[str, InferParameter], None] property writable

Get the parameters of the inference input associated with this object.

Returns:

Type Description
Union[Dict, MessageMap[str, InferParameter], None]

The additional inference parameters

shape: List[int] property writable

Get the shape of inference input associated with this object.

Returns:

Type Description
List[int]

The shape of the inference input.

__init__(name, shape, datatype, data=None, parameters=None)

An object of InferInput class is used to describe the input tensor of an inference request.

Parameters:

Name Type Description Default
name str

The name of the inference input whose data will be described by this object.

required
shape

The shape of the associated inference input.

required
datatype

The data type of the associated inference input.

required
data

The data of the inference input. When data is not set, raw_data is used for gRPC to transmit with numpy array bytes by using set_data_from_numpy.

None
parameters

The additional inference parameters.

None
Source code in kserve/protocol/infer_type.py
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def __init__(
    self,
    name: str,
    shape: List[int],
    datatype: str,
    data: Union[List, np.ndarray, InferTensorContents] = None,
    parameters: Optional[Union[Dict, MessageMap[str, InferParameter]]] = None,
):
    """An object of InferInput class is used to describe the input tensor of an inference request.

    Args:
        name: The name of the inference input whose data will be described by this object.
        shape : The shape of the associated inference input.
        datatype : The data type of the associated inference input.
        data : The data of the inference input.
               When data is not set, raw_data is used for gRPC to transmit with numpy array bytes
               by using `set_data_from_numpy`.
        parameters : The additional inference parameters.
    """

    self._name = name
    self._shape = shape
    self._datatype = datatype.upper()
    self._parameters = parameters
    self._data = data
    self._raw_data = None

as_numpy()

Decode the inference input data as numpy array.

Returns:

Type Description
ndarray

A numpy array of the inference input data

Source code in kserve/protocol/infer_type.py
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
def as_numpy(self) -> np.ndarray:
    """Decode the inference input data as numpy array.

    Returns:
        A numpy array of the inference input data
    Raises:
        InvalidInput: If the datatype of the inference input is not recognized.
    """
    dtype = to_np_dtype(self.datatype)
    if dtype is None:
        raise InvalidInput(f"invalid datatype {dtype} in the input")
    if self._raw_data is not None:
        if self.datatype == "BYTES":
            # String results contain a 4-byte string length
            # followed by the actual string characters. Hence,
            # need to decode the raw bytes to convert into
            # array elements.
            np_array = deserialize_bytes_tensor(self._raw_data)
        else:
            np_array = np.frombuffer(self._raw_data, dtype=dtype)
        return np_array.reshape(self._shape)
    else:
        np_array = np.array(self._data, dtype=dtype)
        return np_array.reshape(self._shape)

as_string()

Decodes the inference input data as a list of strings.

Returns:

Type Description
List[List[str]]

List[List[str]]: The decoded data as a list of strings.

Raises:

Type Description
InvalidInput

If the datatype of the inference input is not 'BYTES'.

Source code in kserve/protocol/infer_type.py
220
221
222
223
224
225
226
227
228
229
230
231
232
233
def as_string(self) -> List[List[str]]:
    """
    Decodes the inference input data as a list of strings.

    Returns:
        List[List[str]]: The decoded data as a list of strings.

    Raises:
        InvalidInput: If the datatype of the inference input is not 'BYTES'.
    """
    if self.datatype == "BYTES":
        return [s.decode("utf-8") for li in self._data for s in li]
    else:
        raise InvalidInput(f"invalid datatype {self.datatype} in the input")

set_data_from_numpy(input_tensor, binary_data=True)

Set the tensor data from the specified numpy array for input associated with this object.

Parameters:

Name Type Description Default
input_tensor

The tensor data in numpy array format.

required
binary_data

Indicates whether to set data for the input in binary format or explicit tensor within JSON. The default value is True, which means the data will be delivered as binary data with gRPC or in the HTTP body after the JSON object for REST.

True
Source code in kserve/protocol/infer_type.py
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
def set_data_from_numpy(self, input_tensor: np.ndarray, binary_data: bool = True):
    """Set the tensor data from the specified numpy array for input associated with this object.

    Args:
        input_tensor : The tensor data in numpy array format.
        binary_data : Indicates whether to set data for the input in binary format
                      or explicit tensor within JSON. The default value is True,
                      which means the data will be delivered as binary data with gRPC or in the
                      HTTP body after the JSON object for REST.

    Raises:
        InferenceError if failed to set data for the tensor.
    """
    if not isinstance(input_tensor, (np.ndarray,)):
        raise InferenceError("input_tensor must be a numpy array")

    dtype = from_np_dtype(input_tensor.dtype)
    if self._datatype != dtype:
        raise InferenceError(
            "got unexpected datatype {} from numpy array, expected {}".format(
                dtype, self._datatype
            )
        )
    valid_shape = True
    if len(self._shape) != len(input_tensor.shape):
        valid_shape = False
    else:
        for i in range(len(self._shape)):
            if self._shape[i] != input_tensor.shape[i]:
                valid_shape = False
    if not valid_shape:
        raise InferenceError(
            "got unexpected numpy array shape [{}], expected [{}]".format(
                str(input_tensor.shape)[1:-1], str(self._shape)[1:-1]
            )
        )

    if not binary_data:
        if self._parameters:
            self._parameters.pop("binary_data_size", None)
        self._raw_data = None
        if self._datatype == "BYTES":
            self._data = []
            try:
                if input_tensor.size > 0:
                    for obj in np.nditer(
                        input_tensor, flags=["refs_ok"], order="C"
                    ):
                        # We need to convert the object to string using utf-8,
                        # if we want to use the binary_data=False. JSON requires
                        # the input to be a UTF-8 string.
                        if input_tensor.dtype == np.object_:
                            if type(obj.item()) == bytes:
                                self._data.append(str(obj.item(), encoding="utf-8"))
                            else:
                                self._data.append(str(obj.item()))
                        else:
                            self._data.append(str(obj.item(), encoding="utf-8"))
            except UnicodeDecodeError:
                raise InferenceError(
                    f'Failed to encode "{obj.item()}" using UTF-8. Please use binary_data=True, if'
                    " you want to pass a byte array."
                )
        else:
            self._data = [val.item() for val in input_tensor.flatten()]
    else:
        self._data = None
        if self._datatype == "BYTES":
            serialized_output = serialize_byte_tensor(input_tensor)
            if serialized_output.size > 0:
                self._raw_data = serialized_output.item()
            else:
                self._raw_data = b""
        else:
            self._raw_data = input_tensor.tobytes()
        if self._parameters is None:
            self._parameters = {"binary_data_size": len(self._raw_data)}
        else:
            self._parameters["binary_data_size"] = len(self._raw_data)

InferOutput

Source code in kserve/protocol/infer_type.py
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
class InferOutput:
    def __init__(
        self,
        name: str,
        shape: List[int],
        datatype: str,
        data: Union[List, np.ndarray, InferTensorContents] = None,
        parameters: Optional[Union[Dict, MessageMap[str, InferParameter]]] = None,
    ):
        """An object of InferOutput class is used to describe the output tensor for an inference response.

        Args:
            name : The name of inference output whose data will be described by this object.
            shape : The shape of the associated inference output.
            datatype : The data type of the associated inference output.
            data : The data of the inference output. When data is not set,
                   raw_data is used for gRPC with numpy array bytes by calling set_data_from_numpy.
            parameters : The additional inference parameters.
        """

        self._name = name
        self._shape = shape
        self._datatype = datatype.upper()
        self._parameters = parameters
        self._data = data
        self._raw_data = None

    @property
    def name(self) -> str:
        """Get the name of inference output associated with this object.

        Returns:
            The name of inference output.
        """
        return self._name

    @property
    def datatype(self) -> str:
        """Get the data type of inference output associated with this object.

        Returns:
            The data type of inference output.
        """
        return self._datatype

    @property
    def data(self) -> Union[List, np.ndarray, InferTensorContents]:
        """Get the data of inference output associated with this object.

        Returns:
            The data of inference output.
        """
        return self._data

    @data.setter
    def data(self, data: Union[List, np.ndarray, InferTensorContents]):
        """Set the data of inference output associated with this object.

        Args:
            data: inference output data.
        """
        self._data = data

    @property
    def shape(self) -> List[int]:
        """Get the shape of inference output associated with this object.

        Returns:
            The shape of inference output
        """
        return self._shape

    @shape.setter
    def shape(self, shape: List[int]):
        """Set the shape of inference output.

        Args:
            shape: The shape of the associated inference output.
        """
        self._shape = shape

    @property
    def parameters(self) -> Union[Dict, MessageMap[str, InferParameter], None]:
        """Get the parameters of inference output associated with this object.

        Returns:
            The additional inference parameters associated with the inference output.
        """
        return self._parameters

    @parameters.setter
    def parameters(self, params: Union[Dict, MessageMap[str, InferParameter]]):
        """Set the parameters of inference output associated with this object.

        :param params: The parameters of inference output
        """
        self._parameters = params

    def as_numpy(self) -> np.ndarray:
        """Decode the tensor output data as numpy array.

        Returns:
            The numpy array of the associated inference output data.
        """
        dtype = to_np_dtype(self.datatype)
        if dtype is None:
            raise InvalidInput("invalid datatype in the input")
        if self._raw_data is not None:
            if self.datatype == "BYTES":
                # String results contain a 4-byte string length
                # followed by the actual string characters. Hence,
                # need to decode the raw bytes to convert into
                # array elements.
                np_array = deserialize_bytes_tensor(self._raw_data)
            else:
                np_array = np.frombuffer(self._raw_data, dtype=dtype)
            return np_array.reshape(self._shape)
        else:
            np_array = np.array(self._data, dtype=dtype)
            return np_array.reshape(self._shape)

    def set_data_from_numpy(self, output_tensor: np.ndarray, binary_data: bool = True):
        """Set the tensor data from the specified numpy array for the inference output associated with this object.

        Args:
            output_tensor : The tensor data in numpy array format.
            binary_data : Indicates whether to set data for the input in binary format
                          or explicit tensor within JSON. The default value is True,
                          which means the data will be delivered as binary data with gRPC or in the
                          HTTP body after the JSON object for REST.

        Raises:
            InferenceError if failed to set data for the output tensor.
        """
        if not isinstance(output_tensor, (np.ndarray,)):
            raise InferenceError("input_tensor must be a numpy array")

        dtype = from_np_dtype(output_tensor.dtype)
        if self._datatype != dtype:
            raise InferenceError(
                "got unexpected datatype {} from numpy array, expected {}".format(
                    dtype, self._datatype
                )
            )
        valid_shape = True
        if len(self._shape) != len(output_tensor.shape):
            valid_shape = False
        else:
            for i in range(len(self._shape)):
                if self._shape[i] != output_tensor.shape[i]:
                    valid_shape = False
        if not valid_shape:
            raise InferenceError(
                "got unexpected numpy array shape [{}], expected [{}]".format(
                    str(output_tensor.shape)[1:-1], str(self._shape)[1:-1]
                )
            )

        if not binary_data:
            if self._parameters:
                self._parameters.pop("binary_data_size", None)
            self._raw_data = None
            if self._datatype == "BYTES":
                self._data = []
                try:
                    if output_tensor.size > 0:
                        for obj in np.nditer(
                            output_tensor, flags=["refs_ok"], order="C"
                        ):
                            # We need to convert the object to string using utf-8,
                            # if we want to use the binary_data=False. JSON requires
                            # the input to be a UTF-8 string.
                            if output_tensor.dtype == np.object_:
                                if type(obj.item()) == bytes:
                                    self._data.append(str(obj.item(), encoding="utf-8"))
                                else:
                                    self._data.append(str(obj.item()))
                            else:
                                self._data.append(str(obj.item(), encoding="utf-8"))
                except UnicodeDecodeError:
                    raise InferenceError(
                        f'Failed to encode "{obj.item()}" using UTF-8. Please use binary_data=True, if'
                        " you want to pass a byte array."
                    )
            else:
                self._data = [val.item() for val in output_tensor.flatten()]
        else:
            self._data = None
            if self._datatype == "BYTES":
                serialized_output = serialize_byte_tensor(output_tensor)
                if serialized_output.size > 0:
                    self._raw_data = serialized_output.item()
                else:
                    self._raw_data = b""
            else:
                self._raw_data = output_tensor.tobytes()
            if self._parameters is None:
                self._parameters = {"binary_data_size": len(self._raw_data)}
            else:
                self._parameters["binary_data_size"] = len(self._raw_data)

    def __eq__(self, other):
        if not isinstance(other, InferOutput):
            return False
        if self.name != other.name:
            return False
        if self.shape != other.shape:
            return False
        if self.datatype != other.datatype:
            return False
        if self.parameters != other.parameters:
            return False
        if self.data != other.data:
            return False
        if self._raw_data != other._raw_data:
            return False
        return True

    def to_dict(self) -> dict:
        return {
            "name": self.name,
            "shape": self.shape,
            "datatype": self.datatype,
            "data": self.data,
            "parameters": self.parameters,
        }

    def __repr__(self) -> str:
        return (
            f'"name": "{self.name}",'
            f'"shape": {self.shape},'
            f'"datatype": "{self.datatype}",'
            f'"data": {self.data},'
            f'"parameters": {self.parameters}'
        )

    def __str__(self) -> str:
        return self.__repr__()

data: Union[List, np.ndarray, InferTensorContents] property writable

Get the data of inference output associated with this object.

Returns:

Type Description
Union[List, ndarray, InferTensorContents]

The data of inference output.

datatype: str property

Get the data type of inference output associated with this object.

Returns:

Type Description
str

The data type of inference output.

name: str property

Get the name of inference output associated with this object.

Returns:

Type Description
str

The name of inference output.

parameters: Union[Dict, MessageMap[str, InferParameter], None] property writable

Get the parameters of inference output associated with this object.

Returns:

Type Description
Union[Dict, MessageMap[str, InferParameter], None]

The additional inference parameters associated with the inference output.

shape: List[int] property writable

Get the shape of inference output associated with this object.

Returns:

Type Description
List[int]

The shape of inference output

__init__(name, shape, datatype, data=None, parameters=None)

An object of InferOutput class is used to describe the output tensor for an inference response.

Parameters:

Name Type Description Default
name

The name of inference output whose data will be described by this object.

required
shape

The shape of the associated inference output.

required
datatype

The data type of the associated inference output.

required
data

The data of the inference output. When data is not set, raw_data is used for gRPC with numpy array bytes by calling set_data_from_numpy.

None
parameters

The additional inference parameters.

None
Source code in kserve/protocol/infer_type.py
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
def __init__(
    self,
    name: str,
    shape: List[int],
    datatype: str,
    data: Union[List, np.ndarray, InferTensorContents] = None,
    parameters: Optional[Union[Dict, MessageMap[str, InferParameter]]] = None,
):
    """An object of InferOutput class is used to describe the output tensor for an inference response.

    Args:
        name : The name of inference output whose data will be described by this object.
        shape : The shape of the associated inference output.
        datatype : The data type of the associated inference output.
        data : The data of the inference output. When data is not set,
               raw_data is used for gRPC with numpy array bytes by calling set_data_from_numpy.
        parameters : The additional inference parameters.
    """

    self._name = name
    self._shape = shape
    self._datatype = datatype.upper()
    self._parameters = parameters
    self._data = data
    self._raw_data = None

as_numpy()

Decode the tensor output data as numpy array.

Returns:

Type Description
ndarray

The numpy array of the associated inference output data.

Source code in kserve/protocol/infer_type.py
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
def as_numpy(self) -> np.ndarray:
    """Decode the tensor output data as numpy array.

    Returns:
        The numpy array of the associated inference output data.
    """
    dtype = to_np_dtype(self.datatype)
    if dtype is None:
        raise InvalidInput("invalid datatype in the input")
    if self._raw_data is not None:
        if self.datatype == "BYTES":
            # String results contain a 4-byte string length
            # followed by the actual string characters. Hence,
            # need to decode the raw bytes to convert into
            # array elements.
            np_array = deserialize_bytes_tensor(self._raw_data)
        else:
            np_array = np.frombuffer(self._raw_data, dtype=dtype)
        return np_array.reshape(self._shape)
    else:
        np_array = np.array(self._data, dtype=dtype)
        return np_array.reshape(self._shape)

set_data_from_numpy(output_tensor, binary_data=True)

Set the tensor data from the specified numpy array for the inference output associated with this object.

Parameters:

Name Type Description Default
output_tensor

The tensor data in numpy array format.

required
binary_data

Indicates whether to set data for the input in binary format or explicit tensor within JSON. The default value is True, which means the data will be delivered as binary data with gRPC or in the HTTP body after the JSON object for REST.

True
Source code in kserve/protocol/infer_type.py
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
def set_data_from_numpy(self, output_tensor: np.ndarray, binary_data: bool = True):
    """Set the tensor data from the specified numpy array for the inference output associated with this object.

    Args:
        output_tensor : The tensor data in numpy array format.
        binary_data : Indicates whether to set data for the input in binary format
                      or explicit tensor within JSON. The default value is True,
                      which means the data will be delivered as binary data with gRPC or in the
                      HTTP body after the JSON object for REST.

    Raises:
        InferenceError if failed to set data for the output tensor.
    """
    if not isinstance(output_tensor, (np.ndarray,)):
        raise InferenceError("input_tensor must be a numpy array")

    dtype = from_np_dtype(output_tensor.dtype)
    if self._datatype != dtype:
        raise InferenceError(
            "got unexpected datatype {} from numpy array, expected {}".format(
                dtype, self._datatype
            )
        )
    valid_shape = True
    if len(self._shape) != len(output_tensor.shape):
        valid_shape = False
    else:
        for i in range(len(self._shape)):
            if self._shape[i] != output_tensor.shape[i]:
                valid_shape = False
    if not valid_shape:
        raise InferenceError(
            "got unexpected numpy array shape [{}], expected [{}]".format(
                str(output_tensor.shape)[1:-1], str(self._shape)[1:-1]
            )
        )

    if not binary_data:
        if self._parameters:
            self._parameters.pop("binary_data_size", None)
        self._raw_data = None
        if self._datatype == "BYTES":
            self._data = []
            try:
                if output_tensor.size > 0:
                    for obj in np.nditer(
                        output_tensor, flags=["refs_ok"], order="C"
                    ):
                        # We need to convert the object to string using utf-8,
                        # if we want to use the binary_data=False. JSON requires
                        # the input to be a UTF-8 string.
                        if output_tensor.dtype == np.object_:
                            if type(obj.item()) == bytes:
                                self._data.append(str(obj.item(), encoding="utf-8"))
                            else:
                                self._data.append(str(obj.item()))
                        else:
                            self._data.append(str(obj.item(), encoding="utf-8"))
            except UnicodeDecodeError:
                raise InferenceError(
                    f'Failed to encode "{obj.item()}" using UTF-8. Please use binary_data=True, if'
                    " you want to pass a byte array."
                )
        else:
            self._data = [val.item() for val in output_tensor.flatten()]
    else:
        self._data = None
        if self._datatype == "BYTES":
            serialized_output = serialize_byte_tensor(output_tensor)
            if serialized_output.size > 0:
                self._raw_data = serialized_output.item()
            else:
                self._raw_data = b""
        else:
            self._raw_data = output_tensor.tobytes()
        if self._parameters is None:
            self._parameters = {"binary_data_size": len(self._raw_data)}
        else:
            self._parameters["binary_data_size"] = len(self._raw_data)

InferRequest

Source code in kserve/protocol/infer_type.py
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
class InferRequest:
    id: Optional[str]
    model_name: str
    parameters: Optional[Dict]
    inputs: List[InferInput]
    from_grpc: bool

    def __init__(
        self,
        model_name: str,
        infer_inputs: List[InferInput],
        request_id: Optional[str] = None,
        raw_inputs=None,
        from_grpc: Optional[bool] = False,
        parameters: Optional[Union[Dict, MessageMap[str, InferParameter]]] = None,
        request_outputs: Optional[List[RequestedOutput]] = None,
    ):
        """InferRequest Data Model.

        Args:
            model_name: The model name.
            infer_inputs: The inference inputs for the model.
            request_id: The id for the inference request.
            raw_inputs: The binary data for the inference inputs.
            from_grpc: Indicate if the data model is constructed from gRPC request.
            parameters: The additional inference parameters.
            request_outputs: The output tensors requested for this inference.
        """

        self.id = request_id
        self.model_name = model_name
        self.inputs = infer_inputs
        self.parameters = parameters
        self.from_grpc = from_grpc
        self._use_raw_outputs = False
        if raw_inputs:
            self._use_raw_outputs = True
            for i, raw_input in enumerate(raw_inputs):
                self.inputs[i]._raw_data = raw_input
        self.request_outputs = request_outputs

    @property
    def use_binary_outputs(self) -> bool:
        """This attribute is used to determine if all the outputs should be returned as raw binary format.
        For REST,
            Get the binary_data_output attribute from the parameters. This will be ovverided by the individual output's 'binary_data' parameter.
        For GRPC,
            It is True, if the received inputs are raw_inputs, otherwise False. For GRPC, if the inputs are raw_inputs,
            then the outputs should be returned as raw_outputs.

        Returns:
            a boolean indicating whether to use binary raw outputs
        """
        # If the request is from gRPC and we receive the inputs as raw inputs, then the outputs should be returned as raw binary format.
        if self._use_raw_outputs and self.from_grpc:
            return True
        # If the request is from REST and the 'use_binary_outputs' parameter is set to True, then the outputs should be returned as raw binary format.
        elif self.parameters and not self.from_grpc:
            # If it is a grpc request, then this configuration has no effect on the output.
            return self.parameters.get("binary_data_output", False)
        else:
            return False

    @classmethod
    def from_grpc(cls, request: ModelInferRequest) -> "InferRequest":
        """
        Class method to construct an InferRequest object from a ModelInferRequest object.

        Args:
            request (ModelInferRequest): The gRPC ModelInferRequest object to be converted.

        Returns:
            InferRequest: The resulting InferRequest object.
        """
        infer_inputs = [
            InferInput(
                name=input_tensor.name,
                shape=list(input_tensor.shape),
                datatype=input_tensor.datatype,
                data=get_content(input_tensor.datatype, input_tensor.contents),
                parameters=(
                    to_http_parameters(input_tensor.parameters)
                    if input_tensor.parameters
                    else None
                ),
            )
            for input_tensor in request.inputs
        ]
        request_outputs = [
            RequestedOutput(
                name=output.name,
                parameters=(
                    to_http_parameters(output.parameters) if output.parameters else None
                ),
            )
            for output in request.outputs
        ]
        return cls(
            request_id=request.id,
            model_name=request.model_name,
            infer_inputs=infer_inputs,
            raw_inputs=request.raw_input_contents,
            from_grpc=True,
            parameters=request.parameters,
            request_outputs=request_outputs if request_outputs else None,
        )

    @classmethod
    def from_bytes(
        cls, req_bytes: bytes, json_length: int, model_name: str
    ) -> "InferRequest":
        """The class method to construct the InferRequest object from REST raw request bytes.

        Args:
            req_bytes (bytes): The raw InferRequest in bytes.
            json_length (int): The length of the json bytes.
            model_name (str): The name of the model.

        Returns:
            InferRequest: The resulting InferRequest object.

        Raises:
            InvalidInput: If the request format is unrecognized or if necessary fields are missing.
        """
        json_bytes = req_bytes[:json_length]
        try:
            infer_req_dict = orjson.loads(json_bytes)
        except orjson.JSONDecodeError as e:
            raise InvalidInput(f"Unrecognized request format: {e}")
        infer_inputs = []
        # Read the raw binary inputs appended after json
        start_index = json_length
        for input_ in infer_req_dict["inputs"]:
            parameters = input_.get("parameters", None)
            infer_input = InferInput(
                name=input_["name"],
                shape=input_["shape"],
                datatype=input_["datatype"],
                parameters=parameters,
            )
            infer_input_data = input_.get("data", None)
            if infer_input_data is not None:
                if infer_input.datatype == "FP16":
                    raise InvalidInput(
                        f"Receiving FP16 data via JSON is not supported. Please use the binary data format "
                        f"for input {infer_input.name}"
                    )
                infer_input.data = infer_input_data
            elif parameters and "binary_data_size" in parameters:
                binary_data_size = parameters.get("binary_data_size", None)
                if binary_data_size is None:
                    raise InvalidInput(
                        f"'binary_data_size' is not specified for input '{infer_input.name}' for model '{model_name}'"
                    )
                end_index = start_index + binary_data_size
                infer_input._raw_data = req_bytes[start_index:end_index]
                infer_input.set_data_from_numpy(
                    infer_input.as_numpy(), binary_data=False
                )
                start_index = end_index
            else:
                raise InvalidInput(
                    f"'data' field is missing for input '{infer_input.name}' for model '{model_name}'"
                )
            infer_inputs.append(infer_input)
        requested_outputs = None
        if infer_req_dict.get("outputs", None) is not None:
            requested_outputs = [
                RequestedOutput(
                    name=output["name"],
                    parameters=output.get("parameters", None),
                )
                for output in infer_req_dict["outputs"]
            ]
        return cls(
            model_name=model_name,
            request_id=infer_req_dict.get("id", None),
            parameters=infer_req_dict.get("parameters", None),
            infer_inputs=infer_inputs,
            request_outputs=requested_outputs,
        )

    @classmethod
    def from_inference_request(
        cls, request: InferenceRequest, model_name: str
    ) -> "InferRequest":
        """The class method to construct the InferRequest object from InferenceRequest object.

        Args:
            request (InferenceRequest): The InferenceRequest object.
            model_name (str): The name of the model.
        Returns:
            InferRequest: The resulting InferRequest object.
        Raises:
            InvalidInput: If the request format is unrecognized.
        """
        infer_inputs = []
        for infer_input in request.inputs:
            if infer_input.datatype == "FP16" and len(infer_input.data) != 0:
                raise InvalidInput(
                    f"Sending FP16 data via JSON is not supported. "
                    f"Please use the binary data format for input {infer_input.name}"
                )
            infer_inputs.append(
                InferInput(
                    name=infer_input.name,
                    shape=infer_input.shape,
                    datatype=infer_input.datatype,
                    data=infer_input.data,
                    parameters=(
                        {} if infer_input.parameters is None else infer_input.parameters
                    ),
                )
            )

        requested_outputs = None
        if request.outputs:
            requested_outputs = [
                RequestedOutput(
                    name=output.name,
                    parameters=({} if output.parameters is None else output.parameters),
                )
                for output in request.outputs
            ]
        return cls(
            request_id=request.id,
            model_name=model_name,
            infer_inputs=infer_inputs,
            parameters=request.parameters,
            request_outputs=requested_outputs,
        )

    def to_rest(self) -> Tuple[Union[bytes, Dict], Optional[int]]:
        """
        Converts the InferRequest object to v2 REST InferRequest Dict or bytes.
        This method is used to convert the InferRequest object into a format that can be sent over a REST API.

        Returns:
            Tuple[Union[bytes, Dict], Optional[int]]: A tuple containing the InferRequest in bytes or Dict and the length of the JSON part of the request.
                                                      If it is dict, then the json length will be None.

        Raises:
            InvalidInput: If the data is missing for an input or if both 'data' and 'raw_data' fields are set for an input.
        """
        infer_inputs = []
        raw_inputs = []
        for infer_input in self.inputs:
            if infer_input.data is None and infer_input._raw_data is None:
                raise InvalidInput(
                    f"'data' field is missing for output '{infer_input.name}' for model '{self.model_name}'"
                )
            if isinstance(infer_input.data, np.ndarray):
                infer_input.set_data_from_numpy(infer_input.data, binary_data=False)
            if infer_input.data and infer_input._raw_data:
                raise InvalidInput(
                    f"Both 'data' and 'raw_data' fields are set for input '{infer_input.name}' for model '{self.model_name}'"
                )

            if infer_input.datatype == "FP16" and infer_input.data:
                raise InvalidInput(
                    f"Sending FP16 data via JSON is not supported. Please use the binary data format for input {infer_input.name}"
                )

            infer_input_dict = {
                "name": infer_input.name,
                "shape": infer_input.shape,
                "datatype": infer_input.datatype,
            }
            if infer_input.parameters:
                infer_input_dict["parameters"] = to_http_parameters(
                    infer_input.parameters
                )
            if infer_input._raw_data:
                raw_inputs.append(infer_input._raw_data)
            else:
                infer_input_dict["data"] = infer_input.data
            infer_inputs.append(infer_input_dict)
        requested_outputs = []
        if self.request_outputs:
            for requested_output in self.request_outputs:
                requested_output_dict = {
                    "name": requested_output.name,
                }
                if requested_output.parameters:
                    requested_output_dict["parameters"] = to_http_parameters(
                        requested_output.parameters
                    )
                requested_outputs.append(requested_output_dict)
        res = {
            "id": self.id if self.id else str(uuid.uuid4()),
            "model_name": self.model_name,
            "inputs": infer_inputs,
        }
        if requested_outputs:
            res["outputs"] = requested_outputs
        if self.parameters:
            res["parameters"] = to_http_parameters(self.parameters)

        if len(raw_inputs) != 0:
            infer_response_bytes = orjson.dumps(res)
            json_length = len(infer_response_bytes)
            infer_response_bytes = b"".join([infer_response_bytes] + raw_inputs)
            return infer_response_bytes, json_length

        return res, None

    def to_grpc(self) -> ModelInferRequest:
        """Converts the InferRequest object to gRPC ModelInferRequest type.

        Returns:
            ModelInferRequest gRPC type converted from InferRequest object.
        """
        infer_inputs = []
        raw_input_contents = []
        for infer_input in self.inputs:
            if isinstance(infer_input.data, np.ndarray):
                infer_input.set_data_from_numpy(infer_input.data, binary_data=True)
            infer_input_dict = {
                "name": infer_input.name,
                "shape": infer_input.shape,
                "datatype": infer_input.datatype,
            }
            if infer_input.parameters:
                infer_input_dict["parameters"] = to_grpc_parameters(
                    infer_input.parameters
                )
            if infer_input._raw_data is not None:
                raw_input_contents.append(infer_input._raw_data)
            else:
                if not isinstance(infer_input.data, List):
                    raise InvalidInput("input data is not a List")
                infer_input_dict["contents"] = {}
                data_key = GRPC_CONTENT_DATATYPE_MAPPINGS.get(
                    infer_input.datatype, None
                )
                if data_key is not None:
                    infer_input._data = [
                        bytes(val, "utf-8") if isinstance(val, str) else val
                        for val in infer_input.data
                    ]  # str to byte conversion for grpc proto
                    infer_input_dict["contents"][data_key] = infer_input.data
                else:
                    raise InvalidInput("invalid input datatype")
            infer_inputs.append(infer_input_dict)
        request_outputs = []
        if self.request_outputs:
            for request_output in self.request_outputs:
                request_output_dict = {"name": request_output.name}
                if request_output.parameters:
                    request_output_dict["parameters"] = to_grpc_parameters(
                        request_output.parameters
                    )
                request_outputs.append(request_output_dict)

        return ModelInferRequest(
            id=self.id,
            model_name=self.model_name,
            inputs=infer_inputs,
            raw_input_contents=raw_input_contents,
            parameters=to_grpc_parameters(self.parameters) if self.parameters else None,
            outputs=request_outputs if request_outputs else None,
        )

    def as_dataframe(self) -> pd.DataFrame:
        """Decode the tensor inputs as pandas dataframe.

        Returns:
            The inference input data as pandas dataframe
        """
        dfs = []
        for input in self.inputs:
            input_data = input.data
            if input.datatype == "BYTES":
                input_data = [
                    str(val, "utf-8") if isinstance(val, bytes) else val
                    for val in input.data
                ]
            dfs.append(pd.DataFrame(input_data, columns=[input.name]))
        return pd.concat(dfs, axis=1)

    def get_input_by_name(self, name: str) -> Optional[InferInput]:
        """Find an input Tensor in the InferenceRequest that has the given name
        Args:
            name : str
                name of the input Tensor object
        Returns:
            InferInput
                The InferInput with the specified name, or None if no
                input with this name exists
        """
        for infer_input in self.inputs:
            if name == infer_input.name:
                return infer_input
        return None

    def __eq__(self, other):
        if not isinstance(other, InferRequest):
            return False
        if self.model_name != other.model_name:
            return False
        if self.id != other.id:
            return False
        if self.from_grpc != other.from_grpc:
            return False
        if self.parameters != other.parameters:
            return False
        if self.inputs != other.inputs:
            return False
        if self.request_outputs != other.request_outputs:
            return False
        return True

    def to_dict(self) -> dict:
        return {
            "id": self.id,
            "model_name": self.model_name,
            "inputs": [infer_input.to_dict() for infer_input in self.inputs],
            "parameters": self.parameters,
            "from_grpc": self.from_grpc,
        }

    def __repr__(self) -> str:
        return (
            f'"id": "{self.id}",'
            f'"model_name": "{self.model_name}",'
            f'"inputs": {self.inputs.__repr__()},'
            f'"parameters": {self.parameters},'
            f'"from_grpc": {self.from_grpc}'
        )

    def __str__(self) -> str:
        return self.__repr__()

use_binary_outputs: bool property

This attribute is used to determine if all the outputs should be returned as raw binary format. For REST, Get the binary_data_output attribute from the parameters. This will be ovverided by the individual output's 'binary_data' parameter. For GRPC, It is True, if the received inputs are raw_inputs, otherwise False. For GRPC, if the inputs are raw_inputs, then the outputs should be returned as raw_outputs.

Returns:

Type Description
bool

a boolean indicating whether to use binary raw outputs

__init__(model_name, infer_inputs, request_id=None, raw_inputs=None, from_grpc=False, parameters=None, request_outputs=None)

InferRequest Data Model.

Parameters:

Name Type Description Default
model_name str

The model name.

required
infer_inputs List[InferInput]

The inference inputs for the model.

required
request_id Optional[str]

The id for the inference request.

None
raw_inputs

The binary data for the inference inputs.

None
from_grpc Optional[bool]

Indicate if the data model is constructed from gRPC request.

False
parameters Optional[Union[Dict, MessageMap[str, InferParameter]]]

The additional inference parameters.

None
request_outputs Optional[List[RequestedOutput]]

The output tensors requested for this inference.

None
Source code in kserve/protocol/infer_type.py
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
def __init__(
    self,
    model_name: str,
    infer_inputs: List[InferInput],
    request_id: Optional[str] = None,
    raw_inputs=None,
    from_grpc: Optional[bool] = False,
    parameters: Optional[Union[Dict, MessageMap[str, InferParameter]]] = None,
    request_outputs: Optional[List[RequestedOutput]] = None,
):
    """InferRequest Data Model.

    Args:
        model_name: The model name.
        infer_inputs: The inference inputs for the model.
        request_id: The id for the inference request.
        raw_inputs: The binary data for the inference inputs.
        from_grpc: Indicate if the data model is constructed from gRPC request.
        parameters: The additional inference parameters.
        request_outputs: The output tensors requested for this inference.
    """

    self.id = request_id
    self.model_name = model_name
    self.inputs = infer_inputs
    self.parameters = parameters
    self.from_grpc = from_grpc
    self._use_raw_outputs = False
    if raw_inputs:
        self._use_raw_outputs = True
        for i, raw_input in enumerate(raw_inputs):
            self.inputs[i]._raw_data = raw_input
    self.request_outputs = request_outputs

as_dataframe()

Decode the tensor inputs as pandas dataframe.

Returns:

Type Description
DataFrame

The inference input data as pandas dataframe

Source code in kserve/protocol/infer_type.py
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
def as_dataframe(self) -> pd.DataFrame:
    """Decode the tensor inputs as pandas dataframe.

    Returns:
        The inference input data as pandas dataframe
    """
    dfs = []
    for input in self.inputs:
        input_data = input.data
        if input.datatype == "BYTES":
            input_data = [
                str(val, "utf-8") if isinstance(val, bytes) else val
                for val in input.data
            ]
        dfs.append(pd.DataFrame(input_data, columns=[input.name]))
    return pd.concat(dfs, axis=1)

from_bytes(req_bytes, json_length, model_name) classmethod

The class method to construct the InferRequest object from REST raw request bytes.

Parameters:

Name Type Description Default
req_bytes bytes

The raw InferRequest in bytes.

required
json_length int

The length of the json bytes.

required
model_name str

The name of the model.

required

Returns:

Name Type Description
InferRequest InferRequest

The resulting InferRequest object.

Raises:

Type Description
InvalidInput

If the request format is unrecognized or if necessary fields are missing.

Source code in kserve/protocol/infer_type.py
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
@classmethod
def from_bytes(
    cls, req_bytes: bytes, json_length: int, model_name: str
) -> "InferRequest":
    """The class method to construct the InferRequest object from REST raw request bytes.

    Args:
        req_bytes (bytes): The raw InferRequest in bytes.
        json_length (int): The length of the json bytes.
        model_name (str): The name of the model.

    Returns:
        InferRequest: The resulting InferRequest object.

    Raises:
        InvalidInput: If the request format is unrecognized or if necessary fields are missing.
    """
    json_bytes = req_bytes[:json_length]
    try:
        infer_req_dict = orjson.loads(json_bytes)
    except orjson.JSONDecodeError as e:
        raise InvalidInput(f"Unrecognized request format: {e}")
    infer_inputs = []
    # Read the raw binary inputs appended after json
    start_index = json_length
    for input_ in infer_req_dict["inputs"]:
        parameters = input_.get("parameters", None)
        infer_input = InferInput(
            name=input_["name"],
            shape=input_["shape"],
            datatype=input_["datatype"],
            parameters=parameters,
        )
        infer_input_data = input_.get("data", None)
        if infer_input_data is not None:
            if infer_input.datatype == "FP16":
                raise InvalidInput(
                    f"Receiving FP16 data via JSON is not supported. Please use the binary data format "
                    f"for input {infer_input.name}"
                )
            infer_input.data = infer_input_data
        elif parameters and "binary_data_size" in parameters:
            binary_data_size = parameters.get("binary_data_size", None)
            if binary_data_size is None:
                raise InvalidInput(
                    f"'binary_data_size' is not specified for input '{infer_input.name}' for model '{model_name}'"
                )
            end_index = start_index + binary_data_size
            infer_input._raw_data = req_bytes[start_index:end_index]
            infer_input.set_data_from_numpy(
                infer_input.as_numpy(), binary_data=False
            )
            start_index = end_index
        else:
            raise InvalidInput(
                f"'data' field is missing for input '{infer_input.name}' for model '{model_name}'"
            )
        infer_inputs.append(infer_input)
    requested_outputs = None
    if infer_req_dict.get("outputs", None) is not None:
        requested_outputs = [
            RequestedOutput(
                name=output["name"],
                parameters=output.get("parameters", None),
            )
            for output in infer_req_dict["outputs"]
        ]
    return cls(
        model_name=model_name,
        request_id=infer_req_dict.get("id", None),
        parameters=infer_req_dict.get("parameters", None),
        infer_inputs=infer_inputs,
        request_outputs=requested_outputs,
    )

from_grpc(request) classmethod

Class method to construct an InferRequest object from a ModelInferRequest object.

Parameters:

Name Type Description Default
request ModelInferRequest

The gRPC ModelInferRequest object to be converted.

required

Returns:

Name Type Description
InferRequest InferRequest

The resulting InferRequest object.

Source code in kserve/protocol/infer_type.py
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
@classmethod
def from_grpc(cls, request: ModelInferRequest) -> "InferRequest":
    """
    Class method to construct an InferRequest object from a ModelInferRequest object.

    Args:
        request (ModelInferRequest): The gRPC ModelInferRequest object to be converted.

    Returns:
        InferRequest: The resulting InferRequest object.
    """
    infer_inputs = [
        InferInput(
            name=input_tensor.name,
            shape=list(input_tensor.shape),
            datatype=input_tensor.datatype,
            data=get_content(input_tensor.datatype, input_tensor.contents),
            parameters=(
                to_http_parameters(input_tensor.parameters)
                if input_tensor.parameters
                else None
            ),
        )
        for input_tensor in request.inputs
    ]
    request_outputs = [
        RequestedOutput(
            name=output.name,
            parameters=(
                to_http_parameters(output.parameters) if output.parameters else None
            ),
        )
        for output in request.outputs
    ]
    return cls(
        request_id=request.id,
        model_name=request.model_name,
        infer_inputs=infer_inputs,
        raw_inputs=request.raw_input_contents,
        from_grpc=True,
        parameters=request.parameters,
        request_outputs=request_outputs if request_outputs else None,
    )

from_inference_request(request, model_name) classmethod

The class method to construct the InferRequest object from InferenceRequest object.

Parameters:

Name Type Description Default
request InferenceRequest

The InferenceRequest object.

required
model_name str

The name of the model.

required
Source code in kserve/protocol/infer_type.py
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
@classmethod
def from_inference_request(
    cls, request: InferenceRequest, model_name: str
) -> "InferRequest":
    """The class method to construct the InferRequest object from InferenceRequest object.

    Args:
        request (InferenceRequest): The InferenceRequest object.
        model_name (str): The name of the model.
    Returns:
        InferRequest: The resulting InferRequest object.
    Raises:
        InvalidInput: If the request format is unrecognized.
    """
    infer_inputs = []
    for infer_input in request.inputs:
        if infer_input.datatype == "FP16" and len(infer_input.data) != 0:
            raise InvalidInput(
                f"Sending FP16 data via JSON is not supported. "
                f"Please use the binary data format for input {infer_input.name}"
            )
        infer_inputs.append(
            InferInput(
                name=infer_input.name,
                shape=infer_input.shape,
                datatype=infer_input.datatype,
                data=infer_input.data,
                parameters=(
                    {} if infer_input.parameters is None else infer_input.parameters
                ),
            )
        )

    requested_outputs = None
    if request.outputs:
        requested_outputs = [
            RequestedOutput(
                name=output.name,
                parameters=({} if output.parameters is None else output.parameters),
            )
            for output in request.outputs
        ]
    return cls(
        request_id=request.id,
        model_name=model_name,
        infer_inputs=infer_inputs,
        parameters=request.parameters,
        request_outputs=requested_outputs,
    )

get_input_by_name(name)

Find an input Tensor in the InferenceRequest that has the given name Args: name : str name of the input Tensor object Returns: InferInput The InferInput with the specified name, or None if no input with this name exists

Source code in kserve/protocol/infer_type.py
860
861
862
863
864
865
866
867
868
869
870
871
872
873
def get_input_by_name(self, name: str) -> Optional[InferInput]:
    """Find an input Tensor in the InferenceRequest that has the given name
    Args:
        name : str
            name of the input Tensor object
    Returns:
        InferInput
            The InferInput with the specified name, or None if no
            input with this name exists
    """
    for infer_input in self.inputs:
        if name == infer_input.name:
            return infer_input
    return None

to_grpc()

Converts the InferRequest object to gRPC ModelInferRequest type.

Returns:

Type Description
ModelInferRequest

ModelInferRequest gRPC type converted from InferRequest object.

Source code in kserve/protocol/infer_type.py
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
def to_grpc(self) -> ModelInferRequest:
    """Converts the InferRequest object to gRPC ModelInferRequest type.

    Returns:
        ModelInferRequest gRPC type converted from InferRequest object.
    """
    infer_inputs = []
    raw_input_contents = []
    for infer_input in self.inputs:
        if isinstance(infer_input.data, np.ndarray):
            infer_input.set_data_from_numpy(infer_input.data, binary_data=True)
        infer_input_dict = {
            "name": infer_input.name,
            "shape": infer_input.shape,
            "datatype": infer_input.datatype,
        }
        if infer_input.parameters:
            infer_input_dict["parameters"] = to_grpc_parameters(
                infer_input.parameters
            )
        if infer_input._raw_data is not None:
            raw_input_contents.append(infer_input._raw_data)
        else:
            if not isinstance(infer_input.data, List):
                raise InvalidInput("input data is not a List")
            infer_input_dict["contents"] = {}
            data_key = GRPC_CONTENT_DATATYPE_MAPPINGS.get(
                infer_input.datatype, None
            )
            if data_key is not None:
                infer_input._data = [
                    bytes(val, "utf-8") if isinstance(val, str) else val
                    for val in infer_input.data
                ]  # str to byte conversion for grpc proto
                infer_input_dict["contents"][data_key] = infer_input.data
            else:
                raise InvalidInput("invalid input datatype")
        infer_inputs.append(infer_input_dict)
    request_outputs = []
    if self.request_outputs:
        for request_output in self.request_outputs:
            request_output_dict = {"name": request_output.name}
            if request_output.parameters:
                request_output_dict["parameters"] = to_grpc_parameters(
                    request_output.parameters
                )
            request_outputs.append(request_output_dict)

    return ModelInferRequest(
        id=self.id,
        model_name=self.model_name,
        inputs=infer_inputs,
        raw_input_contents=raw_input_contents,
        parameters=to_grpc_parameters(self.parameters) if self.parameters else None,
        outputs=request_outputs if request_outputs else None,
    )

to_rest()

Converts the InferRequest object to v2 REST InferRequest Dict or bytes. This method is used to convert the InferRequest object into a format that can be sent over a REST API.

Returns:

Type Description
Tuple[Union[bytes, Dict], Optional[int]]

Tuple[Union[bytes, Dict], Optional[int]]: A tuple containing the InferRequest in bytes or Dict and the length of the JSON part of the request. If it is dict, then the json length will be None.

Raises:

Type Description
InvalidInput

If the data is missing for an input or if both 'data' and 'raw_data' fields are set for an input.

Source code in kserve/protocol/infer_type.py
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
def to_rest(self) -> Tuple[Union[bytes, Dict], Optional[int]]:
    """
    Converts the InferRequest object to v2 REST InferRequest Dict or bytes.
    This method is used to convert the InferRequest object into a format that can be sent over a REST API.

    Returns:
        Tuple[Union[bytes, Dict], Optional[int]]: A tuple containing the InferRequest in bytes or Dict and the length of the JSON part of the request.
                                                  If it is dict, then the json length will be None.

    Raises:
        InvalidInput: If the data is missing for an input or if both 'data' and 'raw_data' fields are set for an input.
    """
    infer_inputs = []
    raw_inputs = []
    for infer_input in self.inputs:
        if infer_input.data is None and infer_input._raw_data is None:
            raise InvalidInput(
                f"'data' field is missing for output '{infer_input.name}' for model '{self.model_name}'"
            )
        if isinstance(infer_input.data, np.ndarray):
            infer_input.set_data_from_numpy(infer_input.data, binary_data=False)
        if infer_input.data and infer_input._raw_data:
            raise InvalidInput(
                f"Both 'data' and 'raw_data' fields are set for input '{infer_input.name}' for model '{self.model_name}'"
            )

        if infer_input.datatype == "FP16" and infer_input.data:
            raise InvalidInput(
                f"Sending FP16 data via JSON is not supported. Please use the binary data format for input {infer_input.name}"
            )

        infer_input_dict = {
            "name": infer_input.name,
            "shape": infer_input.shape,
            "datatype": infer_input.datatype,
        }
        if infer_input.parameters:
            infer_input_dict["parameters"] = to_http_parameters(
                infer_input.parameters
            )
        if infer_input._raw_data:
            raw_inputs.append(infer_input._raw_data)
        else:
            infer_input_dict["data"] = infer_input.data
        infer_inputs.append(infer_input_dict)
    requested_outputs = []
    if self.request_outputs:
        for requested_output in self.request_outputs:
            requested_output_dict = {
                "name": requested_output.name,
            }
            if requested_output.parameters:
                requested_output_dict["parameters"] = to_http_parameters(
                    requested_output.parameters
                )
            requested_outputs.append(requested_output_dict)
    res = {
        "id": self.id if self.id else str(uuid.uuid4()),
        "model_name": self.model_name,
        "inputs": infer_inputs,
    }
    if requested_outputs:
        res["outputs"] = requested_outputs
    if self.parameters:
        res["parameters"] = to_http_parameters(self.parameters)

    if len(raw_inputs) != 0:
        infer_response_bytes = orjson.dumps(res)
        json_length = len(infer_response_bytes)
        infer_response_bytes = b"".join([infer_response_bytes] + raw_inputs)
        return infer_response_bytes, json_length

    return res, None

InferResponse

Source code in kserve/protocol/infer_type.py
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
class InferResponse:
    id: str
    model_name: str
    model_version: Optional[str]
    parameters: Optional[Dict]
    outputs: List[InferOutput]
    from_grpc: bool

    def __init__(
        self,
        response_id: str,
        model_name: str,
        infer_outputs: List[InferOutput],
        model_version: Optional[str] = None,
        raw_outputs=None,
        from_grpc: Optional[bool] = False,
        parameters: Optional[Union[Dict, MessageMap[str, InferParameter]]] = None,
        use_binary_outputs: Optional[bool] = False,
        requested_outputs: Optional[List[RequestedOutput]] = None,
    ):
        """The InferResponse Data Model

        Args:
            response_id: The id of the inference response.
            model_name: The name of the model.
            infer_outputs: The inference outputs of the inference response.
            model_version: The version of the model.
            raw_outputs: The raw binary data of the inference outputs.
            from_grpc: Indicate if the InferResponse is constructed from a gRPC response.
            parameters: The additional inference parameters.
            use_binary_outputs: A boolean indicating whether the data for the outputs should be in binary format when sent over REST API.
                                This will be overridden by the individual output's binary_data attribute.
            requested_outputs: The output tensors requested for this inference.
        """

        self.id = response_id
        self.model_name = model_name
        self.model_version = model_version
        self.outputs = infer_outputs
        self.parameters = parameters
        self.from_grpc = from_grpc
        self._requested_outputs = requested_outputs
        self._use_binary_outputs: bool = use_binary_outputs
        if raw_outputs:
            for i, raw_output in enumerate(raw_outputs):
                self.outputs[i]._raw_data = raw_output

    @classmethod
    def from_grpc(cls, response: ModelInferResponse) -> "InferResponse":
        """The class method to construct the InferResponse object from gRPC message type.

        Args:
            response: The GRPC response as ModelInferResponse object.
        Returns:
            InferResponse object.
        """
        infer_outputs = [
            InferOutput(
                name=output.name,
                shape=list(output.shape),
                datatype=output.datatype,
                data=get_content(output.datatype, output.contents),
                parameters=output.parameters,
            )
            for output in response.outputs
        ]
        return cls(
            model_name=response.model_name,
            model_version=response.model_version,
            response_id=response.id,
            parameters=response.parameters,
            infer_outputs=infer_outputs,
            raw_outputs=response.raw_output_contents,
            from_grpc=True,
        )

    @classmethod
    def from_rest(cls, response: Dict) -> "InferResponse":
        """The class method to construct the InferResponse object from REST message type.

        Args:
            response: The response as a dict.
        Returns:
            InferResponse object.
        """
        infer_outputs = [
            InferOutput(
                name=output["name"],
                shape=list(output["shape"]),
                datatype=output["datatype"],
                data=output["data"],
                parameters=output.get("parameters", None),
            )
            for output in response["outputs"]
        ]
        return cls(
            model_name=response.get("model_name"),
            model_version=response.get("model_version", None),
            response_id=response.get("id", None),
            parameters=response.get("parameters", None),
            infer_outputs=infer_outputs,
        )

    @classmethod
    def from_bytes(
        cls,
        res_bytes: bytes,
        json_length: int,
    ) -> "InferResponse":
        """
        Class method to construct an InferResponse object from raw response bytes.
        This method is used to convert the raw response bytes received from a REST API into an InferResponse object.

        Args:
            res_bytes (bytes): The raw response bytes received from the REST API.
            json_length (int): The length of the JSON part of the response.

        Returns:
            InferResponse: The constructed InferResponse object.

        Raises:
            InvalidInput: If the response format is unrecognized or if necessary fields are missing in the response.
            InferenceError: if failed to set data for the output tensor.
        """
        # If json_length is equal to the length of the response bytes, then the response does not have
        # any appended binary data after the json.
        json_bytes = res_bytes[:json_length]
        try:
            infer_res_dict = orjson.loads(json_bytes)
        except orjson.JSONDecodeError as e:
            raise InvalidInput(f"Unrecognized request format: {e}")
        model_name = infer_res_dict["model_name"]
        infer_outputs = []
        # Read the raw binary outputs appended after json
        start_index = json_length
        for output in infer_res_dict["outputs"]:
            parameters = output.get("parameters", None)
            infer_output = InferOutput(
                name=output["name"],
                shape=output["shape"],
                datatype=output["datatype"],
                parameters=parameters,
            )
            if parameters and "binary_data_size" in parameters:
                binary_data_size = parameters.get("binary_data_size")
                end_index = start_index + binary_data_size
                infer_output._raw_data = res_bytes[start_index:end_index]
                infer_output.set_data_from_numpy(
                    infer_output.as_numpy(), binary_data=False
                )
                start_index = end_index
            else:
                infer_output_data = output.get("data", None)
                if infer_output_data is None:
                    raise InvalidInput(
                        f"'data' field is missing for output '{infer_output.name}' for model '{model_name}'"
                    )
                infer_output.data = infer_output_data
            infer_outputs.append(infer_output)
        return cls(
            model_name=model_name,
            response_id=infer_res_dict.get("id", None),
            parameters=infer_res_dict.get("parameters", None),
            infer_outputs=infer_outputs,
        )

    def to_rest(self) -> Tuple[Union[bytes, Dict], Optional[int]]:
        """
        Converts the InferResponse object to v2 REST InferResponse Dict or bytes.
        This method is used to convert the InferResponse object into a format that can be sent over a REST API.

        Returns:
            Tuple[Union[bytes, Dict], Optional[int]]: A tuple containing the InferResponse in bytes or Dict and the length of the JSON part of the response.
                                                      If it is dict, then the json length will be None.

        Raises:
            InvalidInput: If the output data is not a numpy array, bytes, or list.
        """
        infer_outputs = []
        raw_outputs = []
        use_binary_data = self._use_binary_outputs
        outputs = self._requested_outputs if self._requested_outputs else self.outputs

        for output in outputs:
            infer_output = (
                self.get_output_by_name(output.name)
                if self._requested_outputs
                else output
            )
            if self._requested_outputs:
                use_binary_data = output.binary_data
            if infer_output is None:
                raise InvalidInput(
                    f"Unexpected inference output '{output.name}' for model '{self.model_name}'"
                )
            if infer_output.data is None and infer_output._raw_data is None:
                raise InvalidInput(
                    f"'data' field is missing for output '{infer_output.name}' for model '{self.model_name}'"
                )
            if isinstance(infer_output.data, np.ndarray):
                infer_output.set_data_from_numpy(
                    infer_output.data, binary_data=use_binary_data
                )
            elif infer_output.data or infer_output._raw_data:
                infer_output.set_data_from_numpy(
                    infer_output.as_numpy(), binary_data=use_binary_data
                )
            if infer_output.datatype == "FP16" and infer_output.data:
                raise InvalidInput(
                    f"Sending FP16 data via JSON is not supported. Please use the binary data format for output {infer_output.name}"
                )

            infer_output_dict = {
                "name": infer_output.name,
                "shape": infer_output.shape,
                "datatype": infer_output.datatype,
            }
            if infer_output.parameters:
                infer_output_dict["parameters"] = to_http_parameters(
                    infer_output.parameters
                )
            if use_binary_data:
                raw_outputs.append(infer_output._raw_data)
            else:
                infer_output_dict["data"] = infer_output.data
            infer_outputs.append(infer_output_dict)

        res = {
            "id": self.id,
            "model_name": self.model_name,
            "model_version": self.model_version,
            "outputs": infer_outputs,
        }
        if self.parameters:
            res["parameters"] = to_http_parameters(self.parameters)

        if len(raw_outputs) != 0:
            infer_response_bytes = orjson.dumps(res)
            json_length = len(infer_response_bytes)
            infer_response_bytes = b"".join([infer_response_bytes] + raw_outputs)
            return infer_response_bytes, json_length

        return res, None

    def to_grpc(self) -> ModelInferResponse:
        """Converts the InferResponse object to gRPC ModelInferResponse type.

        Returns:
            The ModelInferResponse gRPC message.
        Raises:
            InvalidInput: If the output data is not a List or if the datatype is invalid.
        """
        infer_outputs = []
        raw_output_contents = []
        use_raw_outputs = self._use_binary_outputs
        if not self._use_binary_outputs:
            # If FP16 datatype is present in the outputs use raw outputs.
            if _contains_fp16_datatype(self):
                use_raw_outputs = True
        for infer_output in self.outputs:
            if (
                use_raw_outputs
                and infer_output.data
                and isinstance(infer_output.data, list)
            ):
                infer_output.data = infer_output.as_numpy()
            if isinstance(infer_output.data, np.ndarray):
                infer_output.set_data_from_numpy(infer_output.data, binary_data=True)
            infer_output_dict = {
                "name": infer_output.name,
                "shape": infer_output.shape,
                "datatype": infer_output.datatype,
            }
            if infer_output.parameters:
                infer_output_dict["parameters"] = to_grpc_parameters(
                    infer_output.parameters
                )
            if infer_output._raw_data is not None:
                raw_output_contents.append(infer_output._raw_data)
            else:
                if not isinstance(infer_output.data, List):
                    raise InvalidInput("output data is not a List")
                infer_output_dict["contents"] = {}
                data_key = GRPC_CONTENT_DATATYPE_MAPPINGS.get(
                    infer_output.datatype, None
                )
                if data_key is not None:
                    infer_output._data = [
                        bytes(val, "utf-8") if isinstance(val, str) else val
                        for val in infer_output.data
                    ]  # str to byte conversion for grpc proto
                    infer_output_dict["contents"][data_key] = infer_output.data
                else:
                    raise InvalidInput("to_grpc: invalid output datatype")
            infer_outputs.append(infer_output_dict)

        return ModelInferResponse(
            id=self.id,
            model_name=self.model_name,
            model_version=self.model_version,
            outputs=infer_outputs,
            raw_output_contents=raw_output_contents,
            parameters=to_grpc_parameters(self.parameters) if self.parameters else None,
        )

    def get_output_by_name(self, name: str) -> Optional[InferOutput]:
        """Find an output Tensor in the InferResponse that has the given name

        Args:
            name : str
                name of the output Tensor object
        Returns:
            InferOutput
                The InferOutput with the specified name, or None if no
                output with this name exists
        """
        for infer_output in self.outputs:
            if name == infer_output.name:
                return infer_output
        return None

    def __eq__(self, other):
        if not isinstance(other, InferResponse):
            return False
        if self.model_name != other.model_name:
            return False
        if self.model_version != other.model_version:
            return False
        if self.id != other.id:
            return False
        if self.from_grpc != other.from_grpc:
            return False
        if self.parameters != other.parameters:
            return False
        if self.outputs != other.outputs:
            return False
        return True

    def to_dict(self) -> dict:
        return {
            "id": self.id,
            "model_name": self.model_name,
            "outputs": [infer_output.to_dict() for infer_output in self.outputs],
            "parameters": self.parameters,
            "from_grpc": self.from_grpc,
        }

    def __repr__(self) -> str:
        return (
            f'"id": "{self.id}",'
            f'"model_name": "{self.model_name}",'
            f'"outputs": {self.outputs.__repr__()},'
            f'"parameters": {self.parameters},'
            f'"from_grpc": {self.from_grpc}'
        )

    def __str__(self) -> str:
        return self.__repr__()

__init__(response_id, model_name, infer_outputs, model_version=None, raw_outputs=None, from_grpc=False, parameters=None, use_binary_outputs=False, requested_outputs=None)

The InferResponse Data Model

Parameters:

Name Type Description Default
response_id str

The id of the inference response.

required
model_name str

The name of the model.

required
infer_outputs List[InferOutput]

The inference outputs of the inference response.

required
model_version Optional[str]

The version of the model.

None
raw_outputs

The raw binary data of the inference outputs.

None
from_grpc Optional[bool]

Indicate if the InferResponse is constructed from a gRPC response.

False
parameters Optional[Union[Dict, MessageMap[str, InferParameter]]]

The additional inference parameters.

None
use_binary_outputs Optional[bool]

A boolean indicating whether the data for the outputs should be in binary format when sent over REST API. This will be overridden by the individual output's binary_data attribute.

False
requested_outputs Optional[List[RequestedOutput]]

The output tensors requested for this inference.

None
Source code in kserve/protocol/infer_type.py
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
def __init__(
    self,
    response_id: str,
    model_name: str,
    infer_outputs: List[InferOutput],
    model_version: Optional[str] = None,
    raw_outputs=None,
    from_grpc: Optional[bool] = False,
    parameters: Optional[Union[Dict, MessageMap[str, InferParameter]]] = None,
    use_binary_outputs: Optional[bool] = False,
    requested_outputs: Optional[List[RequestedOutput]] = None,
):
    """The InferResponse Data Model

    Args:
        response_id: The id of the inference response.
        model_name: The name of the model.
        infer_outputs: The inference outputs of the inference response.
        model_version: The version of the model.
        raw_outputs: The raw binary data of the inference outputs.
        from_grpc: Indicate if the InferResponse is constructed from a gRPC response.
        parameters: The additional inference parameters.
        use_binary_outputs: A boolean indicating whether the data for the outputs should be in binary format when sent over REST API.
                            This will be overridden by the individual output's binary_data attribute.
        requested_outputs: The output tensors requested for this inference.
    """

    self.id = response_id
    self.model_name = model_name
    self.model_version = model_version
    self.outputs = infer_outputs
    self.parameters = parameters
    self.from_grpc = from_grpc
    self._requested_outputs = requested_outputs
    self._use_binary_outputs: bool = use_binary_outputs
    if raw_outputs:
        for i, raw_output in enumerate(raw_outputs):
            self.outputs[i]._raw_data = raw_output

from_bytes(res_bytes, json_length) classmethod

Class method to construct an InferResponse object from raw response bytes. This method is used to convert the raw response bytes received from a REST API into an InferResponse object.

Parameters:

Name Type Description Default
res_bytes bytes

The raw response bytes received from the REST API.

required
json_length int

The length of the JSON part of the response.

required

Returns:

Name Type Description
InferResponse InferResponse

The constructed InferResponse object.

Raises:

Type Description
InvalidInput

If the response format is unrecognized or if necessary fields are missing in the response.

InferenceError

if failed to set data for the output tensor.

Source code in kserve/protocol/infer_type.py
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
@classmethod
def from_bytes(
    cls,
    res_bytes: bytes,
    json_length: int,
) -> "InferResponse":
    """
    Class method to construct an InferResponse object from raw response bytes.
    This method is used to convert the raw response bytes received from a REST API into an InferResponse object.

    Args:
        res_bytes (bytes): The raw response bytes received from the REST API.
        json_length (int): The length of the JSON part of the response.

    Returns:
        InferResponse: The constructed InferResponse object.

    Raises:
        InvalidInput: If the response format is unrecognized or if necessary fields are missing in the response.
        InferenceError: if failed to set data for the output tensor.
    """
    # If json_length is equal to the length of the response bytes, then the response does not have
    # any appended binary data after the json.
    json_bytes = res_bytes[:json_length]
    try:
        infer_res_dict = orjson.loads(json_bytes)
    except orjson.JSONDecodeError as e:
        raise InvalidInput(f"Unrecognized request format: {e}")
    model_name = infer_res_dict["model_name"]
    infer_outputs = []
    # Read the raw binary outputs appended after json
    start_index = json_length
    for output in infer_res_dict["outputs"]:
        parameters = output.get("parameters", None)
        infer_output = InferOutput(
            name=output["name"],
            shape=output["shape"],
            datatype=output["datatype"],
            parameters=parameters,
        )
        if parameters and "binary_data_size" in parameters:
            binary_data_size = parameters.get("binary_data_size")
            end_index = start_index + binary_data_size
            infer_output._raw_data = res_bytes[start_index:end_index]
            infer_output.set_data_from_numpy(
                infer_output.as_numpy(), binary_data=False
            )
            start_index = end_index
        else:
            infer_output_data = output.get("data", None)
            if infer_output_data is None:
                raise InvalidInput(
                    f"'data' field is missing for output '{infer_output.name}' for model '{model_name}'"
                )
            infer_output.data = infer_output_data
        infer_outputs.append(infer_output)
    return cls(
        model_name=model_name,
        response_id=infer_res_dict.get("id", None),
        parameters=infer_res_dict.get("parameters", None),
        infer_outputs=infer_outputs,
    )

from_grpc(response) classmethod

The class method to construct the InferResponse object from gRPC message type.

Parameters:

Name Type Description Default
response ModelInferResponse

The GRPC response as ModelInferResponse object.

required
Source code in kserve/protocol/infer_type.py
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
@classmethod
def from_grpc(cls, response: ModelInferResponse) -> "InferResponse":
    """The class method to construct the InferResponse object from gRPC message type.

    Args:
        response: The GRPC response as ModelInferResponse object.
    Returns:
        InferResponse object.
    """
    infer_outputs = [
        InferOutput(
            name=output.name,
            shape=list(output.shape),
            datatype=output.datatype,
            data=get_content(output.datatype, output.contents),
            parameters=output.parameters,
        )
        for output in response.outputs
    ]
    return cls(
        model_name=response.model_name,
        model_version=response.model_version,
        response_id=response.id,
        parameters=response.parameters,
        infer_outputs=infer_outputs,
        raw_outputs=response.raw_output_contents,
        from_grpc=True,
    )

from_rest(response) classmethod

The class method to construct the InferResponse object from REST message type.

Parameters:

Name Type Description Default
response Dict

The response as a dict.

required
Source code in kserve/protocol/infer_type.py
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
@classmethod
def from_rest(cls, response: Dict) -> "InferResponse":
    """The class method to construct the InferResponse object from REST message type.

    Args:
        response: The response as a dict.
    Returns:
        InferResponse object.
    """
    infer_outputs = [
        InferOutput(
            name=output["name"],
            shape=list(output["shape"]),
            datatype=output["datatype"],
            data=output["data"],
            parameters=output.get("parameters", None),
        )
        for output in response["outputs"]
    ]
    return cls(
        model_name=response.get("model_name"),
        model_version=response.get("model_version", None),
        response_id=response.get("id", None),
        parameters=response.get("parameters", None),
        infer_outputs=infer_outputs,
    )

get_output_by_name(name)

Find an output Tensor in the InferResponse that has the given name

Parameters:

Name Type Description Default
name

str name of the output Tensor object

required
Source code in kserve/protocol/infer_type.py
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
def get_output_by_name(self, name: str) -> Optional[InferOutput]:
    """Find an output Tensor in the InferResponse that has the given name

    Args:
        name : str
            name of the output Tensor object
    Returns:
        InferOutput
            The InferOutput with the specified name, or None if no
            output with this name exists
    """
    for infer_output in self.outputs:
        if name == infer_output.name:
            return infer_output
    return None

to_grpc()

Converts the InferResponse object to gRPC ModelInferResponse type.

Returns:

Type Description
ModelInferResponse

The ModelInferResponse gRPC message.

Source code in kserve/protocol/infer_type.py
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
def to_grpc(self) -> ModelInferResponse:
    """Converts the InferResponse object to gRPC ModelInferResponse type.

    Returns:
        The ModelInferResponse gRPC message.
    Raises:
        InvalidInput: If the output data is not a List or if the datatype is invalid.
    """
    infer_outputs = []
    raw_output_contents = []
    use_raw_outputs = self._use_binary_outputs
    if not self._use_binary_outputs:
        # If FP16 datatype is present in the outputs use raw outputs.
        if _contains_fp16_datatype(self):
            use_raw_outputs = True
    for infer_output in self.outputs:
        if (
            use_raw_outputs
            and infer_output.data
            and isinstance(infer_output.data, list)
        ):
            infer_output.data = infer_output.as_numpy()
        if isinstance(infer_output.data, np.ndarray):
            infer_output.set_data_from_numpy(infer_output.data, binary_data=True)
        infer_output_dict = {
            "name": infer_output.name,
            "shape": infer_output.shape,
            "datatype": infer_output.datatype,
        }
        if infer_output.parameters:
            infer_output_dict["parameters"] = to_grpc_parameters(
                infer_output.parameters
            )
        if infer_output._raw_data is not None:
            raw_output_contents.append(infer_output._raw_data)
        else:
            if not isinstance(infer_output.data, List):
                raise InvalidInput("output data is not a List")
            infer_output_dict["contents"] = {}
            data_key = GRPC_CONTENT_DATATYPE_MAPPINGS.get(
                infer_output.datatype, None
            )
            if data_key is not None:
                infer_output._data = [
                    bytes(val, "utf-8") if isinstance(val, str) else val
                    for val in infer_output.data
                ]  # str to byte conversion for grpc proto
                infer_output_dict["contents"][data_key] = infer_output.data
            else:
                raise InvalidInput("to_grpc: invalid output datatype")
        infer_outputs.append(infer_output_dict)

    return ModelInferResponse(
        id=self.id,
        model_name=self.model_name,
        model_version=self.model_version,
        outputs=infer_outputs,
        raw_output_contents=raw_output_contents,
        parameters=to_grpc_parameters(self.parameters) if self.parameters else None,
    )

to_rest()

Converts the InferResponse object to v2 REST InferResponse Dict or bytes. This method is used to convert the InferResponse object into a format that can be sent over a REST API.

Returns:

Type Description
Tuple[Union[bytes, Dict], Optional[int]]

Tuple[Union[bytes, Dict], Optional[int]]: A tuple containing the InferResponse in bytes or Dict and the length of the JSON part of the response. If it is dict, then the json length will be None.

Raises:

Type Description
InvalidInput

If the output data is not a numpy array, bytes, or list.

Source code in kserve/protocol/infer_type.py
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
def to_rest(self) -> Tuple[Union[bytes, Dict], Optional[int]]:
    """
    Converts the InferResponse object to v2 REST InferResponse Dict or bytes.
    This method is used to convert the InferResponse object into a format that can be sent over a REST API.

    Returns:
        Tuple[Union[bytes, Dict], Optional[int]]: A tuple containing the InferResponse in bytes or Dict and the length of the JSON part of the response.
                                                  If it is dict, then the json length will be None.

    Raises:
        InvalidInput: If the output data is not a numpy array, bytes, or list.
    """
    infer_outputs = []
    raw_outputs = []
    use_binary_data = self._use_binary_outputs
    outputs = self._requested_outputs if self._requested_outputs else self.outputs

    for output in outputs:
        infer_output = (
            self.get_output_by_name(output.name)
            if self._requested_outputs
            else output
        )
        if self._requested_outputs:
            use_binary_data = output.binary_data
        if infer_output is None:
            raise InvalidInput(
                f"Unexpected inference output '{output.name}' for model '{self.model_name}'"
            )
        if infer_output.data is None and infer_output._raw_data is None:
            raise InvalidInput(
                f"'data' field is missing for output '{infer_output.name}' for model '{self.model_name}'"
            )
        if isinstance(infer_output.data, np.ndarray):
            infer_output.set_data_from_numpy(
                infer_output.data, binary_data=use_binary_data
            )
        elif infer_output.data or infer_output._raw_data:
            infer_output.set_data_from_numpy(
                infer_output.as_numpy(), binary_data=use_binary_data
            )
        if infer_output.datatype == "FP16" and infer_output.data:
            raise InvalidInput(
                f"Sending FP16 data via JSON is not supported. Please use the binary data format for output {infer_output.name}"
            )

        infer_output_dict = {
            "name": infer_output.name,
            "shape": infer_output.shape,
            "datatype": infer_output.datatype,
        }
        if infer_output.parameters:
            infer_output_dict["parameters"] = to_http_parameters(
                infer_output.parameters
            )
        if use_binary_data:
            raw_outputs.append(infer_output._raw_data)
        else:
            infer_output_dict["data"] = infer_output.data
        infer_outputs.append(infer_output_dict)

    res = {
        "id": self.id,
        "model_name": self.model_name,
        "model_version": self.model_version,
        "outputs": infer_outputs,
    }
    if self.parameters:
        res["parameters"] = to_http_parameters(self.parameters)

    if len(raw_outputs) != 0:
        infer_response_bytes = orjson.dumps(res)
        json_length = len(infer_response_bytes)
        infer_response_bytes = b"".join([infer_response_bytes] + raw_outputs)
        return infer_response_bytes, json_length

    return res, None

RequestedOutput

Source code in kserve/protocol/infer_type.py
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
class RequestedOutput:
    def __init__(self, name: str, parameters: Optional[Dict] = None):
        """
        The RequestedOutput class represents an output that is requested as part of an inference request.

        Args:
            name (str): The name of the output.
            parameters (Optional[Dict]): Additional parameters for the output.
        """
        self._name = name
        self._parameters = parameters

    @property
    def name(self) -> str:
        """
        Get the name of the output.

        Returns:
            str: The name of the output.
        """
        return self._name

    @property
    def parameters(self) -> Optional[Dict]:
        """
        Get the additional parameters for the output.

        Returns:
            Optional[Dict]: The additional parameters for the output.
        """
        return self._parameters

    @parameters.setter
    def parameters(
        self, params: Optional[Union[Dict, MessageMap[str, InferParameter]]]
    ):
        """Set the parameters of the inference input associated with this object.

        Args:
             params: parameters of the inference input
        """
        self._parameters = params

    @property
    def binary_data(self) -> Optional[bool]:
        """Get the binary_data attribute from the parameters.
        This attribute indicates whether the data for the input should be in binary format.

        Returns:
            bool or None: True if the data should be in binary format, False otherwise.
                              If the binary_data attribute is not set, returns None.
        """
        if self.parameters and "binary_data" in self.parameters:
            return self.parameters["binary_data"]
        else:
            return None

    def __eq__(self, other):
        if not isinstance(other, RequestedOutput):
            return False
        if self.name != other.name:
            return False
        if self.parameters != other.parameters:
            return False
        return True

    def __repr__(self):
        return f"RequestedOutput(name={self.name}, parameters={self.parameters})"

    def __str__(self):
        return self.__repr__()

binary_data: Optional[bool] property

Get the binary_data attribute from the parameters. This attribute indicates whether the data for the input should be in binary format.

Returns:

Type Description
Optional[bool]

bool or None: True if the data should be in binary format, False otherwise. If the binary_data attribute is not set, returns None.

name: str property

Get the name of the output.

Returns:

Name Type Description
str str

The name of the output.

parameters: Optional[Dict] property writable

Get the additional parameters for the output.

Returns:

Type Description
Optional[Dict]

Optional[Dict]: The additional parameters for the output.

__init__(name, parameters=None)

The RequestedOutput class represents an output that is requested as part of an inference request.

Parameters:

Name Type Description Default
name str

The name of the output.

required
parameters Optional[Dict]

Additional parameters for the output.

None
Source code in kserve/protocol/infer_type.py
408
409
410
411
412
413
414
415
416
417
def __init__(self, name: str, parameters: Optional[Dict] = None):
    """
    The RequestedOutput class represents an output that is requested as part of an inference request.

    Args:
        name (str): The name of the output.
        parameters (Optional[Dict]): Additional parameters for the output.
    """
    self._name = name
    self._parameters = parameters

deserialize_bytes_tensor(encoded_tensor)

Deserializes an encoded bytes tensor into a numpy array of dtype of python objects

Parameters:

Name Type Description Default
encoded_tensor

bytes The encoded bytes tensor where each element has its length in first 4 bytes followed by the content

required
Source code in kserve/protocol/infer_type.py
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
def deserialize_bytes_tensor(encoded_tensor: bytes) -> np.ndarray:
    """
    Deserializes an encoded bytes tensor into a
    numpy array of dtype of python objects

    Args:
        encoded_tensor : bytes
            The encoded bytes tensor where each element
            has its length in first 4 bytes followed by
            the content
    Returns:
        string_tensor : np.array
            The 1-D numpy array of type object containing the
            deserialized bytes in row-major form.
    """
    strs = list()
    offset = 0
    val_buf = encoded_tensor
    while offset < len(val_buf):
        length = struct.unpack_from("<I", val_buf, offset)[0]
        offset += 4
        sb = struct.unpack_from("<{}s".format(length), val_buf, offset)[0]
        offset += length
        strs.append(sb)
    return np.array(strs, dtype=np.object_)

serialize_byte_tensor(input_tensor)

Serializes a bytes tensor into a flat numpy array of length prepended bytes. The numpy array should use dtype of np.object. For np.bytes, numpy will remove trailing zeros at the end of byte sequence and because of this it should be avoided.

Parameters:

Name Type Description Default
input_tensor

np.array The bytes tensor to serialize.

required
Source code in kserve/protocol/infer_type.py
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def serialize_byte_tensor(input_tensor: np.ndarray) -> np.ndarray:
    """
    Serializes a bytes tensor into a flat numpy array of length prepended
    bytes. The numpy array should use dtype of np.object. For np.bytes,
    numpy will remove trailing zeros at the end of byte sequence and because
    of this it should be avoided.

    Args:
        input_tensor : np.array
            The bytes tensor to serialize.
    Returns:
        serialized_bytes_tensor : np.array
            The 1-D numpy array of type uint8 containing the serialized bytes in row-major form.
    Raises:
        InferenceError If unable to serialize the given tensor.
    """

    if input_tensor.size == 0:
        return np.empty([0], dtype=np.object_)

    # If the input is a tensor of string/bytes objects, then must flatten those into
    # a 1-dimensional array containing the 4-byte byte size followed by the
    # actual element bytes. All elements are concatenated together in row-major
    # order.

    if (input_tensor.dtype != np.object_) and (input_tensor.dtype.type != np.bytes_):
        raise InferenceError("cannot serialize bytes tensor: invalid datatype")

    flattened_ls = []
    # 'C' order is row-major.
    for obj in np.nditer(input_tensor, flags=["refs_ok"], order="C"):
        # If directly passing bytes to BYTES type,
        # don't convert it to str as Python will encode the
        # bytes which may distort the meaning
        if input_tensor.dtype == np.object_:
            if type(obj.item()) == bytes:
                s = obj.item()
            else:
                s = str(obj.item()).encode("utf-8")
        else:
            s = obj.item()
        flattened_ls.append(struct.pack("<I", len(s)))
        flattened_ls.append(s)
    flattened = b"".join(flattened_ls)
    flattened_array = np.asarray(flattened, dtype=np.object_)
    if not flattened_array.flags["C_CONTIGUOUS"]:
        flattened_array = np.ascontiguousarray(flattened_array, dtype=np.object_)
    return flattened_array

to_grpc_parameters(parameters)

Converts REST parameters to GRPC InferParameter objects

:param parameters: parameters to be converted. :return: converted parameters as Dict[str, InferParameter] :raises InvalidInput: if the parameter type is not supported.

Source code in kserve/protocol/infer_type.py
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
def to_grpc_parameters(
    parameters: Union[Dict[str, Union[str, bool, int]], MessageMap[str, InferParameter]]
) -> Dict[str, InferParameter]:
    """
    Converts REST parameters to GRPC InferParameter objects

    :param parameters: parameters to be converted.
    :return: converted parameters as Dict[str, InferParameter]
    :raises InvalidInput: if the parameter type is not supported.
    """
    grpc_params: Dict[str, InferParameter] = {}
    for key, val in parameters.items():
        if isinstance(val, str):
            grpc_params[key] = InferParameter(string_param=val)
        elif isinstance(val, bool):
            grpc_params[key] = InferParameter(bool_param=val)
        elif isinstance(val, int):
            grpc_params[key] = InferParameter(int64_param=val)
        elif isinstance(val, InferParameter):
            grpc_params[key] = val
        else:
            raise InvalidInput(f"to_grpc: invalid parameter value: {val}")
    return grpc_params

to_http_parameters(parameters)

Converts GRPC InferParameter parameters to REST parameters

:param parameters: parameters to be converted. :return: converted parameters as Dict[str, Union[str, bool, int]]

Source code in kserve/protocol/infer_type.py
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
def to_http_parameters(
    parameters: Union[dict, MessageMap[str, InferParameter]]
) -> Dict[str, Union[str, bool, int]]:
    """
    Converts GRPC InferParameter parameters to REST parameters

    :param parameters: parameters to be converted.
    :return: converted parameters as Dict[str, Union[str, bool, int]]
    """
    http_params: Dict[str, Union[str, bool, int]] = {}
    for key, val in parameters.items():
        if isinstance(val, InferParameter):
            if val.HasField("bool_param"):
                http_params[key] = val.bool_param
            elif val.HasField("int64_param"):
                http_params[key] = val.int64_param
            elif val.HasField("string_param"):
                http_params[key] = val.string_param
        else:
            http_params[key] = val
    return http_params
Back to top